Búsqueda

Joint model prediction and application to individual-level loss reserving

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220002820</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220128112025.0</controlfield>
    <controlfield tag="008">220128e20220103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">219</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220000819</subfield>
      <subfield code="a">Nii-Armah Okine, A.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Joint model prediction and application to individual-level loss reserving</subfield>
      <subfield code="c">A. Nii-Armah Okine,  Edward W. Frees, Peng Shi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Innon-life insurance, the payment history can be predictive of the timing of a settlement for individual claims. Ignoring the association between the payment process and the settlement process could bias the prediction of outstanding payments. To address this issue, we introduce into the literature of micro-level loss reserving a joint modeling framework that incorporates longitudinal payments of a claim into the intensity process of claim settlement. We discuss statistical inference and focus on the prediction aspects of the model. We demonstrate applications of the proposed model in the reserving practice with a detailed empirical analysis using data from a property insurance provider. The prediction results from an out-of-sample validation show that the joint model framework outperforms existing reserving models that ignore the paymentsettlement association.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080556495</subfield>
      <subfield code="a">Siniestros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080617561</subfield>
      <subfield code="a">Liquidación de siniestros</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">03/01/2022 Volumen 52 Número 1 - enero 2022 , p. 91-116</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
  </record>
</collection>