Búsqueda

Toward an explainable machine learning model for claim frequency: a use case in car insurance pricing with telematics data

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Toward an explainable machine learning model for claim frequency: a use case in car insurance pricing with telematics data</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220002462">
<namePart>Maillart, Arthur</namePart>
<nameIdentifier>MAPA20220002462</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">In this paper, we suggest an explainable machine learning approach to model the claim frequency of a telematics car dataset. In fact, we use a data-driven method based on tree ensembles, namely, the random forest, to create a claim frequency model. Then, we present a method to build a tree that faithfully synthesizes the predictions of a tree ensemble model such as those derived from the random forest or gradient boosting. This tree serves as a global explanation of the predictions of the black-box. Thanks to this surrogate model, we can extract knowledge from a black-box tree ensemble model. Then, we provide an application to improve the performance of a generalized linear model. Indeed, we integrate this new knowledge into a generalized linear model to increase the predictive power</abstract>
<note type="statement of responsibility">Arthur Maillart</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20170005476">
<topic>Machine learning</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080603779">
<topic>Seguro de automóviles</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080556730">
<topic>Telemática</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220007825">
<topic>Data driven</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>European Actuarial Journal</title>
</titleInfo>
<originInfo>
<publisher>Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</publisher>
</originInfo>
<identifier type="local">MAP20220007085</identifier>
<part>
<text>06/12/2021 Volúmen 11 - Número 2 - diciembre 2021 , p. 579-617</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220310</recordCreationDate>
<recordChangeDate encoding="iso8601">20220911210945.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220008020</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>