Joint Extremes in Temperature and Mortality: A Bivariate POT Approach
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Joint Extremes in Temperature and Mortality: A Bivariate POT Approach</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20190015172">
<namePart>Li, Han</namePart>
<nameIdentifier>MAPA20190015172</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080650421">
<namePart>Tang, Qihe</namePart>
<nameIdentifier>MAPA20080650421</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">This article contributes to insurance risk management by modeling extreme climate risk and extreme mortality risk in an integrated manner via extreme value theory (EVT). We conduct an empirical study using monthly temperature and death data in the United States and find that the joint extremes in cold weather and old-age death counts exhibit the strongest level of dependence. Based on the estimated bivariate generalized Pareto distribution, we quantify the extremal dependence between death counts and temperature indexes. Methodologically, we employ the cutting-edge multivariate peaks over threshold (POT) approach, which is readily applicable to a wide range of topics in extreme risk management.
</abstract>
<note type="statement of responsibility">Han Li, Qihe Tang</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555306">
<topic>Mortalidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20210011108">
<topic>Riesgo</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080574932">
<topic>Cambio climático</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080591182">
<topic>Gerencia de riesgos</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>07/03/2022 Tomo 26 Número 1 - 2022 , p. 43-63</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220315</recordCreationDate>
<recordChangeDate encoding="iso8601">20220315122415.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220008525</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>