Búsqueda

Joint Extremes in Temperature and Mortality: A Bivariate POT Approach

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220008525</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220315122415.0</controlfield>
    <controlfield tag="008">220315e20220307esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190015172</subfield>
      <subfield code="a">Li, Han</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Joint Extremes in Temperature and Mortality: A Bivariate POT Approach</subfield>
      <subfield code="c">Han Li, Qihe Tang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This article contributes to insurance risk management by modeling extreme climate risk and extreme mortality risk in an integrated manner via extreme value theory (EVT). We conduct an empirical study using monthly temperature and death data in the United States and find that the joint extremes in cold weather and old-age death counts exhibit the strongest level of dependence. Based on the estimated bivariate generalized Pareto distribution, we quantify the extremal dependence between death counts and temperature indexes. Methodologically, we employ the cutting-edge multivariate peaks over threshold (POT) approach, which is readily applicable to a wide range of topics in extreme risk management.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20210011108</subfield>
      <subfield code="a">Riesgo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080574932</subfield>
      <subfield code="a">Cambio climático</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080650421</subfield>
      <subfield code="a">Tang, Qihe</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="g">07/03/2022 Tomo 26 Número 1 - 2022 , p. 43-63</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
    </datafield>
  </record>
</collection>