Búsqueda

A guide to Monte Carlo simulation concepts for assessment of risk-return profiles for regulatory purposes

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220013123</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220504091913.0</controlfield>
    <controlfield tag="008">220504e20201207esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190012362</subfield>
      <subfield code="a">Graf, Stefan</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">A guide to Monte Carlo simulation concepts for assessment of risk-return profiles for regulatory purposes</subfield>
      <subfield code="c">Stefan Graf</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Various regulatory initiatives (such as the pan-European PRIIP-regulation or the German chance-risk classification for state subsidized pension products) have been introduced that require product providers to assess and disclose the risk-return profile of their issued products by means of a key information document. We will in this context outline a concept for a (forward-looking) simulation-based approach and highlight its application and advantages. For reasons of comparison, we further illustrate the performance of approximation methods based on a projection of observed returns into the future such as the CornishFisher expansion or bootstrap methods.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080573386</subfield>
      <subfield code="a">Prima de riesgo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080608606</subfield>
      <subfield code="a">Simulación Monte Carlo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20130014791</subfield>
      <subfield code="a">Proyecciones</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20220007085</subfield>
      <subfield code="g">07/12/2020 Volúmen 10 - Número 2 - diciembre 2020 , p. 273-293</subfield>
      <subfield code="t">European Actuarial Journal</subfield>
      <subfield code="d">Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</subfield>
    </datafield>
  </record>
</collection>