Búsqueda

Multistate health transition modeling using neural networks

Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20220014113
003  MAP
005  20220510150246.0
008  220510e20220509esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎7
1001 ‎$0‎MAPA20220004992‎$a‎Wang, Qiqi
24510‎$a‎Multistate health transition modeling using neural networks‎$c‎Qiqi Wang, Katja Hanewald, Xiaojun Wang
520  ‎$a‎This article proposes a new model that combines a neural network with a generalized linear model (GLM) to estimate and predict health transition intensities. We introduce neural networks to health transition modeling to incorporate socioeconomic and lifestyle factors and to allow for linear and nonlinear links between these variables. We use transfer learning to link the models for different health transitions and improve the model estimation for health transitions with limited data. We apply the model to individual-level data from the Chinese Longitudinal Healthy Longevity Survey from 1998 to 2018. The results show that our model performs better in estimation and prediction than standalone GLM and neural network models. We provide new estimates of the life expectancies for a range of population subgroups. We also describe a wide range of possible applications for further health-related research, including risk prediction using health claim data and mortality prediction based on individual-level mortality data.
650 4‎$0‎MAPA20080555306‎$a‎Mortalidad
650 4‎$0‎MAPA20210020971‎$a‎Factores psicosociales
7001 ‎$0‎MAPA20110022112‎$a‎Hanewald, Katja
7001 ‎$0‎MAPA20220005005‎$a‎Wang, Xiaojun
7730 ‎$w‎MAP20077000727‎$g‎09/05/2022 Volumen 89 Número 2 - mayo 2022 , p. 475-504‎$x‎0022-4367‎$t‎The Journal of risk and insurance‎$d‎Nueva York : The American Risk and Insurance Association, 1964-