Dynamic modeling of public and private decision-making for hurricane risk management including insurance, acquisition, and mitigation policy
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220018609</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220624132109.0</controlfield>
<controlfield tag="008">220624e20220606esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Dynamic modeling of public and private decision-making for hurricane risk management including insurance, acquisition, and mitigation policy</subfield>
<subfield code="c">Cen Guo...[et.al.]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We develop a computational framework for the stochastic and dynamic modeling of regional natural catastrophe losses with an insurance industry to support government decision-making for hurricane risk management. The analysis captures the temporal changes in the building inventory due to the acquisition (buyouts) of high-risk properties and the vulnerability of the building stock due to retrofit mitigation decisions. The system is comprised of a set of interacting models to (1) simulate hazard events; (2) estimate regional hurricane-induced losses from each hazard event based on an evolving building inventory; (3) capture acquisition offer acceptance, retrofit implementation, and insurance purchase behaviors of homeowners; and (4) represent an insurance market sensitive to demand with strategically interrelated primary insurers. This framework is linked to a simulation-optimization model to optimize decision-making by a government entity whose objective is to minimize region-wide hurricane losses. We examine the effect of different policies on homeowner mitigation, insurance take-up rate, insurer profit, and solvency in a case study using data for eastern North Carolina. Our findings indicate that an approach that coordinates insurance, retrofits, and acquisition of high-risk properties effectively reduces total (uninsured and insured) losses.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080551254</subfield>
<subfield code="a">Huracanes</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080588434</subfield>
<subfield code="a">Toma de decisiones</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586447</subfield>
<subfield code="a">Modelo estocástico</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077001748</subfield>
<subfield code="g">06/06/2022 Tomo 25 Número 2 - 2022 , p. 173-199</subfield>
<subfield code="x">1098-1616</subfield>
<subfield code="t">Risk management & insurance review</subfield>
<subfield code="d">Malden, MA : The American Risk and Insurance Association by Blackwell Publishing, 1999-</subfield>
</datafield>
</record>
</collection>