Búsqueda

Best upper and lower bounds on Spearman's rho for zero-inflated continuous variables and their application to insurance

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Best upper and lower bounds on Spearman's rho for zero-inflated continuous variables and their application to insurance</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220006712">
<namePart>Mesfioui, Mhamed</namePart>
<nameIdentifier>MAPA20220006712</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">che</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">In this note, we establish the best lower and upper bounds on Spearman's rho for zero-inflated continuous random variables studied by Pimentel (Kendall's Tau and Spearman's Rho for Zero Inflated Data (Ph.D. dissertation). Western Michigan University, Kalamazoo, 2009). The proposed bounds are explicitly expressed in terms of the respective probability masses at the origin. As illustrated in an example based on insurance data, these bounds are useful in practice when interpreting the values of Spearman's rho.

</abstract>
<note type="statement of responsibility">Mhamed Mesfioui, Julien Trufin</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080557799">
<topic>Dependencia</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>European Actuarial Journal</title>
</titleInfo>
<originInfo>
<publisher>Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</publisher>
</originInfo>
<identifier type="local">MAP20220007085</identifier>
<part>
<text>06/06/2022 Volúmen 12 - Número 1 - junio 2022 , p. 417-423</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220704</recordCreationDate>
<recordChangeDate encoding="iso8601">20220704124551.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220019934</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>