Búsqueda

Unsupervised Machine Learning for Bot Detection on Twitter : Generating and Selecting Features for Accurate Clustering

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013288</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240829122056.0</controlfield>
    <controlfield tag="008">240829e20240619esp|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.13</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220004824</subfield>
      <subfield code="a">Al-azawi, Raad</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Unsupervised Machine Learning for Bot Detection on Twitter</subfield>
      <subfield code="b">: Generating and Selecting Features for Accurate Clustering</subfield>
      <subfield code="c">by Raad Al-azawi and Safaa O. AL-mamory</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Twitter is a popular social media platform that is widely used by individuals and businesses. However, it is vulnerable to bot attacks, which can have negative effects on society. Supervised machine learning techniques can detect bots but require labeled data to differentiate between human and bot users. Twitter generates a significant amount of unlabeled data, which can be expensive to label. Unsupervised machine learning techniques, specifically clustering algorithms, are crucial for managing this data and reducing computational complexity</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080570286</subfield>
      <subfield code="a">Redes sociales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080553128</subfield>
      <subfield code="a">Algoritmos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20140023066</subfield>
      <subfield code="a">Ciberataques</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080542245</subfield>
      <subfield code="a">Robots</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="g">19/06/2024 Volumen 27 Número 73 - junio 2024 , p.142-148</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://journal.iberamia.org/index.php/intartif/article/view/1119</subfield>
    </datafield>
  </record>
</collection>