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Abstruct 

In this paper wr presenf an ccunomic equilihrium analvii i  af a reinsurance market. 'L'he continu- 
our-time rnodel cantain, thr  principal componcnts of uncertainly: about thc time instants at ohich 
accident, tzike place. and about ~ I a i m  sires fivcn that accidenrs have uccurred. 

WC p v e  sufficient cunditions on preferentes for a -eneral equilibrium tu rxist. wirh a Parero 
oprima1 ;illo~ati«n. and derive the premium functional via a representative afcnt priccne theor?. 
Thc marginal utility process of the reinsurance market is representcd h) ihe density preces, I'oi 
random mrasures. which oprns up for numrrcius applications 10 premium calculatiuns. some of 
which are prehrntcd i n  the last scction. 

Th r  Hamilron~Jacohi-Brllman equarionc of individual dynamic optimiration are established for 
praportional rrratier. and ihc trrm Ctructiire af i n t r r e ~ t  cates 1s found in this rcinsurance syndicate. 

Th r  paper atrempt, t o  reach a synthesi, hetween thc classical actuarial r i ~ k  theor) of insurlincr. 
in nhich rirrually no ccunomic rrai«ning rakrs place bu1 whcre the nst reserve ir represented b! 
:i ii«chastic proce\r. and the theory of rqui l ihr i i~m pricr formalion ai I h r  hearf of thc rcon«niic\ 
uf uncer1;iiiit) 

líe? wordr: Reinsiirünce. Exchanpe Eqi~ilihrium. Intertcmp,,ral Fconomic Mc~del. Marker Mar-  
ginal Urilit! Procs \ \ .  Densitic, for Siochasric Procrsser. Random Meaiure. Markrd Foint  pro^ 

ccbrr\. Dynamic Optimiziiriiin. Tcrm St r i i c i~ i i r  %,f Intereht Rates. Incomplrtr Modelr. ?un-Pro- 
portional Irriiiici.  

1. lntruduction 

We prerent an economic equilibrium model for a reinsurance market. in which 
there exists uncertainty about the claim sires in the rnarket and uncertainty re- 
garding the time points of occurrence of accidents. In this infinite dimensional 
setting we first presenta set of sufficient conditions guaranteeing the existente of 
an economic equilibrium with a Pareto optimal allocation. A certain representa- 
tion property of martingales is available. and any risk can be decomposed into 21 

proportional and a non-proportioral component treaty. The market's marginal 
utility proce3s ib derived using the Saddle Point Theorem. The terrn structure of 
short-time horrowing is found in the present model. and the premiiim functional 
is established. using the density process for random measures. The Hamilton- 
Jacobi-Bellman equations Cor marked point procesies are estahlished for the in- 
dividual. dynamic optimal proportional components of the reinsurance strategies. 



Finally we pi\,e applications of the general theory 10 premi~ini c«mpiitati«n\ in 
reinsurance. 

One of the niost importan1 results in this paper is related 10 an interpretation of 
the ni:irginal disutility process in the market. resulting in a splitting of the price 
of risk into two components: One related to the claim sizes in the market. and the 
other to thc attitude touards  frequency risk ;it each time inrtant. Given the diver- 
sity of line5 of reinsurance in the i-ea1 world. »ur results can roughly he interpreted 
as  follows: In some lines the uncertainty about freqiiency appears to be far more 
important than the uncertainty about conditional claim sizes. given that accident, 
have occurred íe.g. aiito insurance). In other lines it is rhe other way aroiind. like 
in oil or  marine reinsurance. whereas in yet other lines both sources of uncertainty 
may h e J u d ~ e d  to be of importance. and thus ought to he incorporated in s proper 
analysis. In Section 7 we retui-n to some examples. Another important feature i5 
the classification of any general risky contract into two components: one  corre- 
sponding to a proportic~nal treaty. and the other to a nonproportional contract. 
These two components are orthogonal. in a manner to be made precise in the 
paper. where the proportional treaty is as  clo5c as  possible in some sense to the 
general risk we started out with. Again "closeness" will he  precisely defined 
in the papel-. Dynamic programming is ~ i s e d  to find the optimal proportional 
component of a reinsurance treaty. Also the term structure of interest rates is 
derived within theJump framework of the present paper. and several new aspects 
emerge from this model. distinguishing it from the anzilogc~~is continiio~is type 
models. 

In our model tbr  a piire exchange economy we essume that 5hort-tei-m borro\v- 
ing is possible. and the esrociated interest rate we ultimately determine endoge- 
nously. The \,ect«r of the portfolios of the 1 insurers. constituting the niarket. is 
denoted by xlt) = jx,ítJ. \,(ti. . . .. x,(t) / .  t t T = IO.T]. At time zei-o xíO) e q ~ i a l ~  
the initizil resei-ves of the insurers held at the heginning of the period. 2nd also 
i-epresents the conti-licts that the insurers have negotiated a t  this time. After thc 
reinsurance trezities have been settled. insurei-i's portfolio process. which we shzill 
sometimes cal1 insiirer i's cash tlow o r  net reserve. is denoted by y,(t). t E  7 .  i t  
1 = { l .  2. . . .. 1). Uncertninty is modeled by a filtered probability spnce ((1, F. 
{t i ) .  PJ whei-e the "usual" regularity conditions are satisfied. on w-hich the vector 
processes {xit). t E 7) and {y(tJ. t t T ]  are both defined. The filtration {F,) is right- 
continuo~is.  and t i  2 F,. t ' 5. F = t.,. The set of subsets F, represents 2111 the 
events that could poisihly be observed at time t by al1 the rein,iirers. We assunie 
that information is generated b!, the process x. ¡.e. 

so  that the information the insurers are  assumed to base their reinsiirance strate- 
gies on at each time instant is solely hased on past and present information related 
to the net reserves originally given in thc market. The insurers are assumed to 
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have homogeneous heliefs represented by the probability measure P. In a reinsur- 
ance market thi5 i5 considered to he  a reasonable assumption. since trade is sup- 
posed to take place under conditions of irrnhrrriniarfidei, and no information is 
presumed to be hidden. As  the vector of initial net reserves xít) evolvei «ver time. 
the correiponding vector of actually held net reserves after reinsurance treaties 
have taken place. yít). can be continually renegotiated as  uncertainty is revealed 
bit by hit. in accordance with the preferences of the insurers. subject to the budget 
constraints. and depending on past and present values of x(tJ, and yítJ (¡.e. de- 
pending upon F, ) .  The set of possible outcomes in the world is denoted by fL. with 
generic element w. Thus y,(t.w) = rhe present net reserve a t  time t of insurer i i f  
w t i1 ir the state of the world. Throughout we make the square integrability 
assumption 

The paper is organized a s  follows: In Section ? we present the economic model. 
also containing the stochastic dynamics governing the process {x(t), t E TI. and 
we give sufficient conditions for a static equilibrium to exist. In Section 3 we 
derive the market marginal utility process and discuss proportional and non-pro- 
portional treaties in relation tu the presented model. Here we also explain what 
u e  mean by a sro<~I~<rsri< pqirilihriirrn. In Section 4 we indicate how optimal pro- 
portional dynzimic reinburance strategies can be derived using stochastic contr«l 
theory in the case where a stochastic equilibri~im exist5. In Section 5 we estahlish 
the existence of a stocha5tic equilibri~im for the reinsurance economy under non- 
proportional spanning. hy using known existence results from the corresponding 
static model. In Section 6 we develop the term structure of the interest rates in 
the present insurance syndicate. Ln Section 7 we present applications to premium 
calculations in the reinsiirance market. and in Section 8 we offer some concluding 
remzirks. 

2. The economic model 

In this section we describe the primitives for a stochastic reinsurance exchange 
economy: a model for uncertainty and revelation of information over time. a 
collection of stochastic processes representing the insurance risks in the mar- 
ket. endowments and initial net reserves. and preferences. The existence of a 
static equilibrium is demonstrated in this section. first under weak conditions 
on preferences, later under more restrictive assumptions yielding stronger 1-e- 
sult5. 
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\ \ t .  .i\\iiiii<. t 1 i . 1 1  ilic iicl reherves {x,(tl. t t  T} of insurer i can he decomposed as  
l < ~ l I ~ l i \  \ 

Hcre a,(tl equals the assets of insurer i .  which means the initial reserves plus 
~iccumulated prerni~ims in [O. t l .  and z,( t)  equals the total claims payments under 
insurer i '$  contracts paid ~ i p  to time t. The accumulated premiums must be deter- 
mined endogenously. and we return to this issue later on.  Consider the two quan- 
tities 

and 

.4t each time t the vectoi- V ( 1 . ~ 1  is the value of past premiums le,\ claims pay- 
ments of al1 the insurers in the market. and V ( t . x ~  is the (randoml amounts of 
futui-e lincliiding preicntl claims payments less premiums lsee e.€.. Norherg 
1 I9901J. Cle:~rly 

We are interested in the market v:ilue at any time t of V-!t.x). givcn the common 
information F, availahle to the insurers at that time. 'This qu:intity we denote by 
V:ít.x). and uTe may cal1 it the /~rosper.tii.e F-markct value a t  time t. partly in 
accordance with actuarial terminology. Since the terms "nct reserves" are usually 
uscd in connection with the quantities V and V .  the equations (2.2)-(2.4) justify 
our  usage of this term for x in the absence of discounting. 

The claims process zít) = (z,( t) .  ~ ~ ( 1 ) .  - . .. z,(t)J in the market we assume to be 
a marked. discontinuous jump process, where the marks signify the different !vec. 
tos valued) claim sizes a t  distinct random time instants of accidents in T. This 
seems like a most natural model of claims in any insurance markct. In actuarial 
risk theury one classicel univarinte examplc of such a process is used in the Lund- 

berg model. where r i s a  compound Poisson proccss. Forrnally :ind more generally 
u'e assume that z can he represented as  a stochastic integral over a random mea- 
sure viw. A: 0. denoted for short hy z-v. as  follows !see e .&.  Gihman and Sko- 
rohod 1197Yal) 

where R ,  = [O. r). and the rnultiple state integral is over the se1 
R 1  = R , x . . . x K + íI times). Here v(A: t )  is the niirnber of jumps the process 
z(s1 makei  in the time interval (0. t ]  with values falling in the set A. A E 
B i .  where B'+ equals the Borel measurable subsets in R', . The interpretation is 
rhat a t  random time points 7,. T?. . . events happen and a corresponding sequence 
of claims u"'. u"'. . . . with values in R1. are realized. We assume that the (P. F,)- 
predictable intensity!transition kernel A7(w.t: du )  associated with the random mea- 
sure v. t l ic <lirulpre<lictnbleprojrction of v .  can he factored into a conditional joint 
probability transition kernel F'(w.1: du) and a non-negative E;-predictable inten- 
sity process A'íw.t) as  follows 

.A proceis is called pr<~<i ic . i~ ib / r  if it is nieastirahlc with respect to the u-field PiF , )  
on I l  x T generated by the left-continuou5 F,-adapted processes. Intuitively a 
proccbs a( t i  is predictahle if the  values of a i t )  can be determined from information 
available up to.  but not including time t for each t E T. 

'The relation hetween u and h'(t: du )  is given by 

Let h(1.u) be any i-e;il fiinction such that the stochastic integral 

is well defined for al1 t E T. Suppose the fiinction is measurahle with respect to 
P!F,) = P(F,)@Hi. . Any P(F,)-measurable mapping h: 7 X I l  x R: -. R is usu- 
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I Iii.\c , ~ ~ ~ ~ i i i i ~ ~ l i o i i \  iii:i) hc interpreted as: (i) strictly monotonic preferences, (ii) 
L i ~ i i i i i i i i < ~ i i \  l~icl.iciice\. liiii the aggregate initial portfolio in the market. the mar- 
h i i  I N I I  Ili>li<~ \,,. i h  extrcmely desirable, (iv) convex preferences, and (v) the initial 
~ ~ < ~ i i l < i l i i ~  o l  ciich inwrer is not identically equal to zero (with probability one). 
I : i t ~ i i i  i i i i  ;iiid l i i i )  i t  follows that 3' has a continuous utility representation U'(.):  
I '111. 1 ' .  1'1, - R. Assumption (iii) can be considered as a smoothness condition 
i r i i  prclerences and a strengthening of monotonicity. It holds automatically if there 
i \  ;I continuous. positive linear functional .rr such that ~ ( y )  2. T(X) whenever y3 'x .  
C'onversely. if 3' is convex, then uniform properness implies the existence of such 
;i functional. Thus. under risk aversion uniform properness is equivalent to a lin- 
ear premium functional. which is precisely what we want. 

I.et us assume that there exists a market for the insurance contracts. The re- 
insurance syndicate I.loyd's of London used to he known for precisely this; any 
risk could be insured. and the market would eventually. through a negotiation 
process. arrive a1 a market premium. In order to prevent arbitrage possibilities 
the premium T(.J must be ;t linear functional on L2íQ. F. P). As an illustration 
of this point. assume on the contrary that r í y ,  + y!) > rr(y,) + v(yl) for two 
insurance risks y,  and y?. Then one agent could insure the bundle (y ,  + y:) 
and reinsure separately y, and y,. The cash flow at time zero equals 
l .rríy, + y:) - 7i(yI) - y?)] > 0. whereas the cash flow at the terminal date T 
eqii:ils -(?.,(TI + ylíT)) i \.,(Ti + yJT) = O. This strategy leaves no obliga- 
tions iit thc final time. so thi5 strategy identifies a riskless profit at time zero. This 
i5 a money piimp. or  :i "Cree lunch." which is inconsistent with an economic equi- 
lihrium. In thc case where the ineq~iality is reversed, the strategy is of course to 
insure separately y ,  and y, and to reinsure the bundle (y,  + y,). 

Assumption 2.1 is not necessarily the weakest that can be found. If the prefer- 
ente relations are represented by utility fiinctions of the form E{u,(y(T)). then 
sufficient conditions for assumptions (i)-íiv! are that u,(.) be concave. strictly in- 
creli5ing ~ i t h  a rieht derivative at zero and that x,(T) is bounded away from rero 
with probability one (Duffie 119861). Uniqueness of equilibria in a financia1 eco- 
nomics setting i discussed by Karatzas. Lakner, Lehoczky and Shreve [1988]. In 
the same type of models Araujo and Monteiro [19891 have pointed out the restric- 
tivencss of assuming that x, (or aggregate endowments) is bounded away from 
zero. 

2.4. T/ie <,.ri.stcnce qf n .fr<iti<. rqirilihrirrni 

Here we demonstrate the existence of a competitive equilibrium with a Parcto 
optimal all»c:ition. We do this by demonstrating the existence of an equilibrium 
in the iisual Arrow-Dehreu-Borch sense for the insurance economy, which we 
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denote by I E  = ( X , ,  x,, 3'; i E I) where X ,  = L2(Q, F. P ) _ .  For such an econ- 
omy every time-state "Arrow security" is assumed available for reinsurancr trea- 
ties al  time zero. leaving no incentive for markers to remain open after time zero. 
The introduction of this static economy in a dynamic setting may seem. at first 
sight, to be purely a matter of ones imagination, since the number of states is 
uncountable. Also the dynamic feature of the economy is not transparent and can 
not be exploited in this framework. Nevertheless, it turns out to be a useful con- 
struction in the development of a dynamic description of an equilibrium. A key 
point is that we may "implement" the dynamic model in a static setting, and since 
we know that there exists an equilibrium in the static model. we can exploit this 
fact to construct an equilibrium also in the dynamic economy it.irhouf the irse of 
dynamic prograrnmirig t~chniqu<>s. This las1 point is noticeable. since dynamic 
optimization for stochastic processes of the kind we are considering in our model. 
is a rather delicate matter which requires certain heroic assumptions on behalf of 
the insurers. 

A static equilibrium for IE is defined as a nonzeto premium functional 7í on X. 
initial portfolios x, E X, and reinsurance treaties y, E X satisfying for al1 i E I 

and 

In a reinsurance setting this definition of an equilibrium was first formulated by 
Borch 119621 in a one-period model. Condition (2.14) corresponds to the budget 
constraint in conventional microeconomic analysis. The insurer no. i may improve 
his position from a risk-sharing perspective in accordance with his preferences. 
but the market value of his portfolio will not change (increase). Condition (2 .10  
states that each insurer's final portfolio is optimal according to his preferences. 
Condition (2.16) follows since the 1 insurers are assumed to exchange parts of the 
risks only among themselves. The following result can now be shown: 

Proposition 2.1: Undcr Assumpriori 2.1, IE Iiri.s a static equilihrium ii.ith n P(ireto 
oprima1 allocution, >,,here rhe marker pr<~miumfirnctional .rr is giveri hy 

and ii'here V(T) E X, . C 

Since X is its own dual space, the representation in (2.17) follows in the first place 
from Riesz' representation theorem for linear functionals on L'(i1, F, P). The ad- 
ditional fact that V(T) E X _  requires of course separate arguments. 
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The pr11oF i>i thi\ rciult can be found in kase 119901. It follous by techniques 
~bhich I iy  no% ;irc hecoming standard. references to which can be found in. e.g. .  
1 ) ~ 1 i l i ~  1 1~x61 .  

Since our goal in this paper is not to present the most general behavioral assump- 
tions under which interesting results can be proven. but rather to present distri- 
butional realism on behalf of the risk processes in the reinsurance market and 
make a synthesis of this with the economic theory of uncertainty. let us specialize 
to the case where preferences 3' on X _  are represented by expected utility 
E{u,IyITII). where u;(.) > 0 and u;(.) < O. Condition (2.151 can now be formulated 
as follows: Agent i's problem is to find a function y(.) such that 

max E{u,ly,(x(T))} (2.18) 
>,,,,ex 

iindei the budget conitraini 

Since the pi-emiiim i h  21 linear functiunal on X.  by the Kiesz' representetion theo- 
rem there cxi\ts some fiinction V t X such thac 

We now adopt conditions guariinteeing the existente » f a  competitive eq~iilibriuni 
with an interior optimum. In the literature one such condition is known 21s the 
lnada condition (see e . 8 .  Ihffie II98Xll. Denoting by U'lyl = E/u,(yIT)/. the 
technical term ir that U'  is additively separable and regular ( u ) .  This involves 
\moothness conditions on u,. snd in addition it is required infinite marginal utilities 
;rt zero. Unfortunately this unboundedness is also inconsistent with thc proper- 
ness condition in Proposition 2.1. Given that therc exists an interior sulution to 
(2.18-191. it can be characterized as hllows: Forming the Lagrangian ofthis proh- 
lem. we seek the saddle point of 

LO.,: A , )  = E(u,íy,(x)) - A , (  - x,)V/ (2.21) 

Because «f the concavity of the Bernoulli utility functions u,. the necessary and 
sufficient conditions for an interior optimum are given hy the Euler equations 

The economic interpretation of V = V(x,(T). x:(T). . . . . x,(T)) is that it represents 
the market marginal utility at x(T). Some immediate consequences of 12.22) are: 

where x,(T) = IIt, x,(T). so that only changes in the aggregate market portfolio 
x, affects the market marginal utility. This follows fiom differentiating (2.22) 
along x,. Similarly 

Thus only changes in the aggregate market portfolio x , (T)  affects the optimal final 
sharing rules y,. In the static model this means that the reinsurance syndicate can 
hand in al1 their initial portfolios to a pool. and let the pool's clerk distribute parts 
of x,íOI back to the syndicate members according to the optimal sharing rules 
y,(x,(O)). Then the market closes. and reopens at time T. whei-e y,(x,lTll is real- 
ized by insurer i, i = 1. 2. . . ., 1. 

Pareto optimality is established along the following lines: It i known that Par- 
eto optimal sharing rules are found by findingfunctions y,(.) .  such that the random 
variables y,(x(Tl) are sqiiare integrable and solve the following 

max, F { C ~ , U , ( Y , ( X ( T I ) ) J  ( 2 . 2 5 )  
!i,\ltL- ,e1 

such that (2.16) holds P-a.5.. where k .  k' . . .. k, are ;irbitrary positive constants. 
The associated Lagrangian of this problem is 

where the Lagrangian multiplier A(.) is now a Borel-measurable function, meaning 
that X(x(T)) is an F,-measurable random variable. The first arder necessar)' and 
sufficient conditions for an interior optimuni. given tk i t  it existb. are again giwn 
by the Eoler eqiiations 

which is seen to be equivalent to (2.22) after identifying Víx) with h(xl and k, with 
A; ' .  This explains why V(x(T)) can be thought of as rhe shadow price per unit of 
P-probability when x(7.w) = x(T). Thus the optimal solutions y,  also satisfy col- 
lective rationality. or  Pareto optimality. From the very formulation of the problem 
in (2.18-19) it also follows that they must satisfy individual rationality. given that 
this problem has a solution. Under very mild technical conditioní. i t  was shown 



ísee Du Muiichel (196Xji thüt there will always exist at lelist one Pareto »primal 
trc;liy. We now have the following: 

Thenrem 2.1: Suppose thr p r~ fe r (~nc r s  a' on L'íf1, I;. P) ure represenred h? 
lJ'fy,) = E{u,(y,íT)j), u.here U' is uddit i~:ely .sepuruhle and regular irr,j. lf t h ~  ug- 
 regate murket portfolio x,,,f T)  ;S houndm away frorn zcro wirh probnbility ont2, 
t l i <v~  the stutic reinsurancr economy IE = (X,, x,, 3'; i E 1) has un equilihrium 
with a set ofPareto oprima1 allocutions y,(x,,,(T)j, i t l .  sarisfving individuul rutio- 
nality. ?he equil ibri~rm is charu<.terized by (2.22) and (2.27). The premium func- 
rionul is givrn by .rr(v) = ELV1.~,,1T))yí~,~lT))l. it,hert, the murket marginal utilit? 
V is determinedfrom the individual preferencrs by 12.22) and 12.23). O 

S o  far we have not utilized the increasing information tlow F,. nor have we 
discussed the construction of dynamic strategies producing the optimal portfolios 
y,. In orderfor  the theory to be usefiil. there must exist some strategic reinsurance 
treaty available to each insurer. such that the agents can adsust their net reserves 
in eccordance u,ith preferences a s  uncertainty resolves itself with time. In the next 
section we show how our  "static." infinite dimensiontl problem can be reduced 
lo  21 cei-tain finite dimensional one,  with an explicit dynamic description. In Sec- 
tion 5 we shall denionbtrate the existente of optimal strategies hy implementing 
the static model in oiir dynamic setting. 

3. Dynamic equilibrium in the reinsurance economy IE 

The ecoriomy analyzed in the preceding section is essentially a static. (me-period 
infinitc dimensional 5pace-time decision prohlem. In this section we first rediice 
it to a dynamic (1 + IJ-diniensional decision pruhlem for each t E 7 .  To this end 
coniider a net  reserve procesl  x, E X. and let h(t .  u1 - ( h , .  h,. - . .. h,)(t. u )  he  a 
predictable. Kl-indcxed pi-ocess satisfying 
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For any process h t I . 2 ( ~ I  the stochastic integral 1 11 h < s u l X d u :  dsi  ir well . O , !  
K' 

defined. and is ;i (P. F,J-squsre intefrable martingale 

.3.l.l. Proportional treatie.~. Now. with some abuse of notation. let h(1.o) = h(t.x) 
be a P(F,J-measurahle process. For  the model in Section 2 the following stochastic 
integral is also well defined 

- 1 hls,x(s))  zv(dz: ds) .  (3.3) 
10.1, 

Here we interpset h,(t. x)  as  the fraction of the initial portfolio u,ít) held h!, some 
insurer at time t .  if the net resei-ves in the market a t  this time equal xíti. This 
\trategy satisfies the hudget constrtints of the insurer if 

'I'hil requircnient here means that the final value equals the initial value plus any 
gains and losse5 incurred from proportional reinsurance treaties settled in (0 .  tJ. 
new risks undertaken and claims incurred following the strategy h. Note that a 
single contract need not be "self-financing." since settled claims may reqiiire pay- 
outs. and premiums may he paid in on a weekly. monthly o r  annual hasis. as  a 
vate o r  otherwise. The eqiiation (3.31 is a hudget constraint on the total activity 
of an agent 

It follows from the product formula that (3.4) implies that 

x(s-Jdhís. xi = 0 for al1 t E T.  (3.1 

We define the set L2(x) to be  the following: 

1 . 7 ~ )  = {h: hít. U )  is predictahle and R'. -indexed. satisfying (3.11) (3.2) 

Returning to equation (3.3). the stochastic integral there may be interpreted as  
the gains and losses from following a proportional reinsurance strategy h in [O. tl 
Le1 h8'l(t.  xJ  be insurer i's strategy. i = 1. 2. . . .. 1. By definition h;"(O. xl = S , ,  
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IKronecker's delta) and ziny admissible 1i.e.. square integrable) reinsurance strat- 
eg) h "  must satisfy 

Let .!4 be the set of reinsorance contracts that can be generated this way. In gen- 
eral iM is a closed suhspace of L'(C1.I-;P). which follows from the Kunita-Watan- 
abe inequality: Convex combinations of proportional reinsurance treaties are 
agnin proportional treatiei. 

In this econoiny we first take as a numeraii-e a pure discount bond which pays at 
the terminal date T one unit of account. This asset we denote by x,,. where 
x, , ( t l  - 1 for al1 t t 7 :  As a consequence the market premium of x,. ~ ( x , , )  = l .  or. 
stated diffei-ently. ~ i ( x , , i  = E{V(T)x,líTI} = E{VíT)) = l .  where VIT) is the same 
as in (1.17). Also V1T.w) 2 0 P-a.s.. which means that u e  can define a new. bona 
fide probahility measure P by 

Here V(T! equals the Redon-Nikodym del-ivative of P" with respect to P. Denoting 
the expectation operator under P" by E*. i t  follows from 13.71 that the market 
premium at time rero ofziny portfolio x E X can be written 

The prospective F-market value ai time t .  V; 1t.x) = E*/( d(-x(s)) F,) = 
l lT l  

- E*{x(T) - xít - )  F,}. and from assumption (1.2)  it follows by Holder's in- 
equality that E*{x(Tl 1 F,) is a (P". F,l-martingale. The market value of the accu- 
rnul;tted fiitlire claims payments less premiums can altei-natively be cxpressed us- 

ing the given probability mezisure P and the market marginal ~itility VIT!. Define 
the market marginal utility process by 

Vltl = E{VlTl 1 F,}. t t T. P.a.\. (3.91 

It follows that V(t) can be interpreted as the "spot price of risk" at each time 
instant t .  Using the notation 7i(x)(t) = V f 1 t . x ) .  it now follows that 

VíTl 1 
F,) = E{-íx(Tl - xlt - 1) 1 E;) = -E{V(T!xíT) 1 F,} - x(t -1. The third 

Vlt) V(t) 
rquality follows from the change of measure. the las1 from the definition 13.91 and 
the adaptedness of the processes x(t) and V(t1. The fourth equality follows from 
;i result due to Dellacherie and Meyer [1976]: Let A, be an increasing process 
;idapted to F,. 2nd let M, be a nonnegative (P. F,l-martingale. right-continuous and 
iiniformly integrable. Then for any F-stopping time í the following holds true 

rhus we can urite 

1 
' { x l  t',} = E { V ( T ) x ) ( T )  1 F,}. t E T.  P-i1.s. (3.1 1 )  

Vltl 

I t  follows in the siinie kvay that the market premium ofany risk y at time t. ¡.e. of 
ihe reniaininp risk in [t. TI eq~ials 

The theiiretical results of the preceding sections allow LIS to conclude that the 
market value «f ;in insurer's net reserves must depend upon ( i )  the stochastic 
propertieh of his net reserves. l i i l  the stochastic relationship between his partic- 
ular reserves and the accumulated reserves in the market and í i i i )  the attitude 
t«\iards risk in the market. Starting with a set of utility functions for the individual 
insui-el-s. i t  scems rathci- coniplicated t« derive evplicitly a formula for Vlx, íTl)  
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iions of the above kind 5iich that lim h"'(t.w.ul = hlt .o~.u) for el1 (t.w.uJ E 7 

x 0 x K1.  . Suppose for nny martingale y the frinction h1t.w.u) is determined by 
eqiiation (3.21) ; ~ n d  srippose that the functions 6:" in the determination o fh ( t .o~ .u i  
s;itisfies 

In this case our  model can be described by proportional treaties only. and 

The property 13.21) 15 often celled the representation propert!. of rcltitive to x 
under P' in prohability theory. hut for oiir p~irpoie5 we see that this tcrminology 
may he soinewhat mideading. since we should like to reserve this property for 
the cases where the eq~iatiun (3.231 holds instead. The terms h,(t.ul in I3.2l1 in- 
volve non-linear reiniurence on the sizes u "  of claimb in the market. If (3.23) 
holds trrie. r i i i j  reinsurance treaty can be obtained from proportional oncs. Under 
Asi~iniption 3.1. if (3.211 and (3.23) coincide. then ,M - 11. where H i5 the sp;ice 
of sqiiare integrahle P-mnrtingales.  In general is the repi-esentstion in 13.231 more 
restrictive thnn the reprcsentation result l3.21). so  that M C 11. Restricting atten- 
tion to the se1 of pi-oportionnl conti-acts .\f. this does not necesstirily only limii 
the reinsurers ti) proportional treatie5. as  may he indiciited by 13.13). The point is 
that rin? reinsiii-ance treaty in M, nonlinear o s  otherwise. can. a t  least in principle. 
he attained by a siiitable proportional dynamic risk sharing strategy with contin- 
uoiis trading. 

3.3.1. ~Von-proportional reinsurance treaties. Suppose now that M # H. Non-pro- 
portional treaties siich as  exccss «f loss or  stop loss reinsurance d o  exist in the 
market and can be traded directly. The representation (3.21) involves such trea- 
ties. Since transaction couts can be suhstantial in reinsur;rnce markets due  to the 
extensive usage of pr«fcssi«n;tl hroker5. clearly a pruportional representation 
srich a s  13.231. if t rue.  is mainly of thcoretical intercst. However. thel-e niay exist 

treaties. wanted by some reinsurer. that is not available for direct trade. By the 
representation (3.211 the 1-einsurer could in principle manufacture this treaty him- 
self by a siiitable dynamic 1-isk sharing strategy. Now. since M is in general a 
closed subspace of the Hilbert upace H. we know that there exists a unique pair 
ofl inear mappings f and g such that any y t H can be written as  y = fíyl + g(y1. 
f maps H into M. g maps H into M'. where ML is the set of al1 y E H which 
tire orthogonal to every z E M. By orthogonal is here meant that E*lr,y,l = 0. 
If y E M. then f(y) = y. g(yi = O: if y E M-. then f(y) = O. glyl = y. 
Also t i )  1 y - fl),) 1 = i n f {  y - z 1 : z E M) if y t H. liil 
1 y 1 = 1 1  f(yl 1 ' + 1 y 1 ' lhere again noi-m is with respect to E';). Now. 
if y is some contract that can not be represented as  in (3.23). but if x is a vector 
martingale with respect to P". a pro.jection theorern due to Kunita and Watanabe 
119671 allows us to replace (3.231 by 

where m(ti  is a martingale which is P* orthogonal to x. mlOl = O. Correspond- 
ing to the general theory. m ( t ) t  M .  «r gly1 = m and f(y) = Jhs e dx. Follou,ing 
Follmer and Sondermann 119861. we can define a "cost process" by C,1hl" , 5 ,  . : ,  - . . hs(tl . xítl - h l ? )  dx(5) 'ind it 1s clear that under proportional spanning 

C,lh"i = hY(O1 . x(Ol. which is the "arbitrzige price" of y. Follmer and Sonder- 
mann show that if the strategy h"5 y-admissible and the cost process C,(hS) i5 a 
lP.F,l-martingale. then there exists a unique proportional strategy h"' which at 
each time t E [O.T] minimires the following measure R,íhl of expected remaining 
cost E"{(C,(h) - C,(hl)' , F,}. In general terms we could say that it is possible for 
any general. non-proportional treaty (y. h1t.u)) to find a unique proportional treaty 
hSlt) corresponding to an element in M as  "close as  possible" to y. where as  close 
as  possible also could involve minimiring the measure of risk R,1h). The results 
of F6llmer iind Sondermann have been generalized to the case where x is a semi- 
rnartingale under P* by Schweitrer  119881. 

Under Assumption 3.1 there exists a unique V. to be determined in the 
next section. such that our  pricing results are still valid. This follows since 
~ ( y )  = E*IyITI) = y1Ol. as  E"(mlT)) = O since m is a P"-martingale which is 
zero at time zero. We may consider the term m as  a "nonsystem~tic" part of the 
overall risk y. This term can obviously be written 
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¡.e.. as  a difference hetwcen ;i non-proportioniil and a proportional 1re;ity. both 
IP". ti)-mnrtinyales. 

3.4. 71ir in<irLc/ iniir-~in(i1 dis-ririlir? pr-octJ.ss 

Retiii-ning to Section 3.2. we can now give a charactcrization of the Radon-Ni- 
dP" 

kodym derivative V(T) = - in (3.9) for the measure P* in Assumption 3.1.  Ap- 
d P  

pealing afain to results in Boel. Varaiya and Wong [19751 and Jacod l19751. we 
have the following derisit? pr-ocess for our  model 

lthe product íi, , is taken to be I if í, > t ) .  Since E{VIT)} = l .  it can he shown 
using the l loltans-Dade exponential formula th;it Vlt) = E{VlT) 1 i,) P - a . s .  s o  
that V(t1 is indeed a (P. F,)-martingale over T. 

We now turn to the economic interpretation of the two new terms appearing in 
(3.26) as  well as  in Assumption 3.1: The process v is a random measure under P* 
as  well. 2nd the claims process {z ( t ) , t tT )  is still a random. marked point process 
under P". hui now with local characteristics {p,A,. v(z. t)F2ít ,  dz)). Comhining this 
with Theorem 2.1. we have that the function v(z, t )  = v(z,,. t )  for al1 t t T. where 
z ,  = Xe,z,(t1. Furthermore. since the function VI.. t )  is itself a Radon-Nikodym 
derivative of the new conditional claim sire distribution under P*: with respect to 
the old one  under P. v(z,,. 11 can be interpreted as  the mur~ in i r l  dis-irtilit?. of a<.- 
<~rnirrlirrcd cllrini .sizcs iri //ir rnarlkr (ir rime t. In a market of only risk neutral 
members. v(z,. t )  E 1 for al1 (z. t)  E R: x 7: 

Jumps.  or  claini sizes ;ire not the 0111- source of uncertainty in this niodcl. The 
time instants T, , (w)  when accidents occur are random as  well and the frequency is 
measured by A'lw. t) .  which is itself allowed to be an k;-predictahle stochastic 
process. The process p l w .  t )  thus measures riic urtirv<le t«ii~n,ds,fi.<~qrirric.i. risl< iri 
thr  riiirr-krr at each time t t T. 1n actuarial teriiiinology one may perhaps salJ that 

corresponds t« a Ioading on frequency. We return to specific examples in Sec- 
tion 7.  

Notice that the ahove is formulated in terms of marginal dis-utilities on claim 
sizes. A natural reformulation can he  given in terms of marginal utilities on nct 
reserves. o r  v (z , .  t )  = Y(a,l t)  - z t .  Relow i t  will he convenient to work with 

v instead of 0, but we should keep in mind that the market premiums also depends 
iin a , ( t )  = the total initial reserves at time t allocated to the line of reinsurance 
iinder consideration. 

Since the altJ-process of assets in the market stem from incomes through market 
premiums. clearly this vector stochastic process must depend upon market pref- 
crences. and thus he determined endogenously. The precise form this takes in a 
\iochastic equilibrium ir given in (3.15) and (3.17). with the above interpretation 
o l t h e  terms v(.)  and (11.). The linkage of a( t )  to the market now follows. since the 
p;iir (F.  v )  in 13.15-IR) is the same as  the functions appearing in the expression 
kir VIT) given in (3.26). Since V(T) is determined by the market participants. so  
i \  a ( t ) .  This should also be  compared t o  the classical Lundberg model of an  insur- 
lince company. where the incomes process is given exogenously as  a linear func- 
iion a(t1 = ct. where c > O is a constant. In this latter case no economic theory 
i \  used. and only one company is considered (Lundberg [1926]). It is remarkable. 
ihough. that this theory was developed before the theory of stochastic processes 
was formally estahlished. 

I.et y be any portfolio of any of the reinsurers. We cal1 a reinsurance strategy 
h1t.u) E L21x) hiiilyrtfiiisihlr if 

and it is oprini<i/ for insurei- i provided there is no  other budget feasible strategy 
Iw. g)  such that M >' y.  Notice that the predictability requirement means that h, 
giveí the position of the reinsiirer ;ifter the last treaty adjustment hrfore time t. 
hut h, does not depend Lipon the values of x(t) ~ r t  time t. 

A stochastic reinsurance economy IE,  is now defined by the triplet /E, = (/E. 
{t.). I.'lxl~. and a .sto<.lirrstii. rqirilihriirni for IE,  is a collection lrr. x,. y,. h "  11.11): 

i€ l .  t t  TJ where rr is a market premi~im functional for /E,. (y ,  h"'(1.u): i €  l. t t  
7l is an optimai reinsurance strategy for each insurer i E 1 such that markets clear 
P-a.5.: 
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and 

1 h"'1t.u) = 1 .  t E T. u t K I .  
ic, 

(3.29) 

I h e  dynamic type of equilibriums. of which the above is a special case. were first 
studied by Kadner 119721. In Section 5 we demonstrate the existente of such an  
equilibrium in our  reinsurance syndicate. 

4. The individual dynamic optimiaation problemsprnpor t ional  treaties 

In this section we present the individual insurers' dynamic optimization problems 
in some detail. As is usually the case with dynamic programming. a se1 of rather 
strong assumptions is required in order for the problem to be guaranteed a solu- 
tion. lnstead of concentrating on the economic contents of such conditions in this 
section. we defer to Section 5 to demonstrate sufficient conditions for the euis- 
tence of a stochastic equilibrium. Therefore our  presentation in this section is 
somewhat heuristic. We shall only be considering optimal proportionul treaties in 
u h a t  follou \. 

4 . 2 .  I ~ J J  grn~rrr l i?rd lrrrrnzri und r l l t ,  Hrimilron-Jri<.ohi-B~,lln~~~n ~qnr r t i on .~  

Eech agent i E 1 has to solve the following: 

suhject to the hudpet constraints 

where H(xl is the set of permissible. square integrable proportional strategies hbl 
such that the budget constraint (4.2) holds. Let  y, = y,lt) and define for each 
reinsurer i E 1 the following indirc,ct ut i l i ty,~rnr. t ion 

Z,ít. y,) = sup E{u,ly,IT)l 1 F,}. for al1 t t T. (4.31 
h i ' ' c ~ l \ i  

Notice that the hudget con5traint 13.4) together with (3.6) yield the prescnt hiidget 
ciinstraint (4 .2) .  Cleni-ly ihe indirect iitility of each insurer must depend ~ipilii ihe 
iiiarket pi-eferences. since ths  11-aniactionh implicit in (4.2)  are assumcd to t;ike 
place at niarket pi-ices. 

Under certain smoothness conditions the functions Z, I t .y)  may satisfy a non- 
linear equation of paiabolic type. a generalired version of the Hamilton-Jacohi- 
I3ellman equation: Starting with the niodel fol. the net reserves in the market 

we need It6.s generalired lemma. which in our model takes the following form: 
let Glt .  X )  he some continuously differentiahle fiinction in the first arpument. twice 
continuously differentiable in the second. Then (see e.&. Gihman and Skorohod 
11979 a-bl)  

t 

where 

L ~ G . z ) ( s )  = [ci(s.xis-) - - G(s.x(s-)) 



- 
C., - 
o' 
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Suppose there exist function\ Z,ít. y ) .  t t T. i = 1 .  2. . . . .  l .  c«iitinu«usly differ- 
entiahle biith respect t« t and t\vice continuously differentiahlc with respect tu the 
second argunient s;rtisfying the boundednesh conditions Z,!t. y) c C(1 + y'). 

ii il' 
z,(t. -1 c (-11 + 1 y 1 ) .  Z,(t. y)  S C. iE l .  and the generalized Haniil- 

dy iiy- 

ton-Jacobi-Bellman equations (4.13) as well as the terminal condition (4.14). 
Then under the above stipulated conditions the functions Z,(t.y) coincides with 
the indirect utility functions of each of the insurer~ using admissihle stra- 
tegies h '  t Híxl. Moreover there exists a se1 of 1 optimal Markovian 
strategies h8"!t.x) = #"(t.x!t)) provided there exist Rorel functions $"(t.x). 
! t .x )Ei  x R1+ satisfying the equation 

sup I>,i,iZ,(t. y,) = L,i'i ,,,, Z,(t. y,). (4.15) 
~ ' ' ' c H  

If this holds triie. the Hnrnilton-Jac~ibi-Helliiien equatiun can he written 

iiZ,lt. ) , l  
-- L,,p , , ,  Z,ít. y ) .  i = l .  2 .  . . . .  1. 

ilt 
(4 . lhl  

subject to the iisual terminal condition (4.14). As soon as we have si~liitions to the 
system of equations (4.16). it i h  relatively eas), to constriict the optimal propor- 
tional strategies <f>"'!t.x!tJl for each of the 1 insurers from the insurers' indirect 
iitility fiinctions Z,.  Just solve the maximization problem (4.15) for each i E l .  that 
is. the original dynamic optimization prohlem under uncertainty is reduced to the 
easier prohlem of finding the maximum of a real function defined on R1. 

\ 1 l< i I ( ' I 'URE OF PKEMIUMS I N  A REINSURANCE MARKET 

5. 'I'he existence of a stochastic equilihrium-general non-proportional treaties 

I i i  ihis section we demonstrate the existence of a stochastic equilibrium as  it is 
ilclined in Section 3.3. The market assumptions of Section 3 are in force. In par- 
iiciiler there exists sorne probability measure P* equivalen1 to the originally given 
1' \iich that any martingale y can be represented in the form of (3.21) .  When thih 
liold\ true, the resulting partial equilibrium has the property that a small number 
, j t  risks is sufficient to dynamically span the high dimensional space of al1 risks. 
\Iihuugh markets are not complete at any given time. the random measure v spans 
ilic space of al1 possible risks. proportional as well as nonproportional ones. We 
I I C I W  turn to the first result in this section. 

2. Thr existente problem 

I Iie following rerult can be proved: 

I'roposition 5.1: Undrr Assumptions 2.1 nnd 3.1 rhe insurance rconomy IE, = 

11,. { F } .  L2(x)) hris ri stocha,stic rquilibrirrm ~ ' i t l i  11 Pureto oprimrrl ullocution. 

I't?,<!f> Let (TI. y,: i E íJ be the static equilibrium for the insiirance econ- 
~)iiiy IE  guaranteed by Proposition 2.1. where the premilim functional 
n ~ y )  = E{V(T)y(T)} = E*{y(T)/. yEX.  and where V(T) is the market marginal 
~~i i l i ty  and V!t) = E{V(T) 1 F,] can be thought of as a market "spot price process 
ol'risk" at each time t E T. Note that this result does not depend on any kind of 
dvnamic spanning. Consider the (P*, F,)-martingales w,(t) = E* {?,(TI 1 F,} for 
c;ich i € l .  Clearly w is optimal for agent i in the static economy, since 
w,(T) = yiT) .  By (3.21) there exist strategies h"' t L?x) such that 

Notice that the terni I,*' contains the market attiiude towai-ds fi-equeiity risk 
iind t«u,ards claim sire risk \ .  50 that the optimal sirategies niust also depend w,(tl = C,,,hj"(s.uj . u,ü(du:ds) i = l .  2. . . .. 1. t E T. (5.1) 
up«n market preferentes. This is quite natunil. since the preniiumh thnt the ;igents 
Pace at each transaction depend upon the market attitude t»u.ard$ risk. ;is we heve 
pointed oiit earlier. 

In the cases where wc know that a set of optimal strategies <b8"(t.x(t)) exist for I'he budget constraint 13.27) is satisfied under P. By the projection theorem (5.1 

the 1 agents. then wc can use (4.15-161 to construct this sct of strategies. In the 
next section we denionsti-ate the existence of optimal strategies. c;in be replaced by w,(t) = x,(O) + h"l.s(sl . dx(s) + m"l(t), where mi s  a P"-mar- 

In the Markovian case treated in this subsection we could alternatively have 
i 

used the infinitesim;il generatos approach. 1ingale orthogonal to x. m"'(O) = 0, and where h"ls is the associated proportional 
For an swample «f the solution of an equation of the type (4.16) sub.ject to 11-caty closest to h"'. By taking expectations in (5.1) under P* and evaluating at 

boundary conditions found for R&l>-pi-oblenis. \ re  Aase [19X5j. i - T. the terminal time. we get from this representation and the martingale prop- 
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erty of x(tl under P" that E*{w,(T)) = E*{y,(T)] = E*{x,(O)} = E"{x,(T)/, which 
is the budget constraint (2.13) in tlie static economy. Thus. by iising the reinsur- 
ance strategy hU1(t,u) and faced with a time zero portfolio x,(O) and market pre- 
miums 7i(x,I = ~ ( y , )  = E* {yi(Tl}. insurer i can precisely obtain his optimal net 
reserve y, in the static insurance economy IE. 

Suppose insurer i can obtain a strictly preferred portfolio v >' w, by adopting 
a different reinsurance strategy g'" E L'lxl. We cal1 the associated unsystematic 
risk components m:(t). Then the market value .rr must be strictly larger. ¡.e.. 
E* {v,lT)} > E* {w,(T)) = E* {y,(Tl). Substituting the budget constraint for v,. we 
get 

i . e  E* {x,(T)} > E" {).,(TI/. But this contradicts the budget constraint i?.l4l in the 
static reinsurance economy IE. Thus (h'". w l  is optimal tbr insurcr i .  and such a 
plan can be chosen for each i E 1. Suppose we replace the strateg) h"' chosen in 
this wsy by 

This is a permissible strategy since h."' E I.'lx) as  well. Also h."' generates the 
same optimal portfolio w, as does h " :  To ser this. first ohserve that froni linearity 
of stochastic integrals 

Second. from the definitiori of w,It) it follows that x w , ( t l =  
, I 

Iioiii market clearing in the rtatic reinsurance economy 115 and the martingale 
1 1 I 

piilperty ofxl t )  under P". Hence s x , ( t )  - C w , l t )  = w,it). so the claim follows. 
, = 1  , = I  

I Iiis shows that (h'"'. w,) is budget feasible for insurer 1. Since (h"'. w,) is optimal 
loi l .  so is (h."'. w,). From (5.2) and the above it follows that markets clear. so 
111;ii (3.28-29) hold. Thus the conclusion of the proposition follows. U 

Notice that we here have utilired the existente results in the static reinsurance 
rconomy IE to establish our resuli without the direct use of dynamic program- 
tiiiiig. This is particularly fortunats in our model due to the complexity of the 
I I:iiiiilton-Jacobi-Bellman equations in the present sitiiation. 

Similai- iniplementation techniques as demonstrated in the above proof have 
<,;iilier been developed within the context of financia1 economics lsee Duffie and 
Iliiiing [19851 and Cox and Hiianz [1991jl. 

\ \  in Section 2.5 !ve no\v considei rhe case  her re pi-eferences are represented b? 
,c\pected utility. Suppose eech agetit i wants to iolve 

max U'íyl (5.31 

uihject to %(y,) = írlx,) = E{V,x,lI~)).  where U'(),) = E{ii,íy,(T))} for ionie Ber- 
i i c r i i l l i  iitility fiinction 11, Mith u,( . )  > O and u,¡.) < O ,  i t 1. 

I'roof. I h c  pi-««f ~.sseniinlly fol l«\~r  from the theoi-y of this section. Prop«siiiori 
5 ,  l .  and fr«m Theoreiii 2.  l .  Here we use Pi-oposition 5.1 nnd the s;iddle poiiii 
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theorem as  fo l lo~ ,s :  The results of this proposition hold under the conditions of 
Theorem 5.1. so that there exists an equlibrium. Define for strictly positive con- 
stant k , .  kl. . . .. k ,  

Ü(x,,l = sup ~ k , ~ ' ( y , ( x ) )  (5.4) 
,ex i t i  

such that market clearing 2, y,(x) = 2, x = x, holds. Then we know from the 
s;iddle point theorem that x, is the solution tu 

max U(xl suhject to T ( X )  = aIxhl). (5.5) 
i i Y ,  

Problem (5.5) is eqiiivalent lo the problem 

111 relaxing the aisumption that x,lt) 1 for al1 t E T. we still keep the above 
l t t i  ir1 of the premium functional. hut the mzirtingale property under P of V~x,,(tl.t) 
0 8 ,  Iirnger automatically follows. neither is the expected value of V(x,,lT).Tl nec- 
t\\;irily eq~ial to unity any niore. 

\iipp«se we define the equilihrium interest rate pi-ocess. ¡.e.. the interest rate on 
i~rhless short-time borrowing as follows: I t  eqrruls r l l r  sr»christic prucrss {rít). t 

1')  ivhich i s  t l l r  retrrrn r<rtr d<~nlu t idrd  by rr scc.rrrity ivhose erlrrilihriiiin pricc is 
.iIiiciys ~rnit?. Recall our model f«r the net reserves in the market given in 14.4). 
iiid consider the market quantities x,(tl. a,lt) = 2, a,lt) and z , ( t l  = 2 r , ( t ) .  
i I~,;irly the dynamic equation for the aggregated net reierlTes in the market ~ , ~ ( t )  
i . i l l l i l l ~  

max E{ü(y(T))] subject to E{V,y(T)] = E{V,x,(T)J. 15.61 
I F X ,  

x\,(tj = x,,(Ol + 1 j/ z~.~~v(a..sI - 1I~:~ :~da lc i s  
, R' 

where uly) = supX,k,u,(y,l subject to 2 , y  = y. Since u, are strictly concave. in- 
Ii 

creasing utility functions. so is u(.) .  Also. since x, solves (5.6). there must exist 
¿)U 

some Lagrangian multipler A > O in (5.6) such that -(x,lT)) = AV,. by the Euler 
iiv 

dü l ' \  Iinearit) of stochastic integrals. Even if the expression for the markct mar-sinal 
equations. Thus V,  = A ' zlx,líT)) only depends on [he vecforr(Tl  through the , , i I l i t ~  i n  (3.231 is  no Ioneer valid. the ree~ilaritv Dr«nerties of V ~ ~ , , ~ t ) . t l  a \  a fLlnc- 

L', 
. . . .  . 

sum «f i t s  components, same can be told time t < T, ~ ~ ~ m o f  the argunient\ are inherited from the individual utility functions of the 

V, = E{V(x,) t;} only depends «n x(t) via x,ltl = 2, x,ít). O iii\~irers. so that \ve can use the zeneralircd 116 formiila to obtain 

6. Thr term structure of interest rates 

h .  l .  Irrtror/irr.tion 

In this section we develop an equilihrium model for the interest rate on 1-isk Cree 
borrowing in oor model. There is a well developed theory in financia1 economicb 
for how the interest rate may result endogenous to the model (see e.g.. Cox. In- 
gersoll and Ross [1985], Merton 11973a1). In the present case we need a careful 
examination of how uncei-tainty is revealed as time goes in our model. and this 
need5 to be combined with the principies of economic equilibrium analysis and 
the associated stochastic calculus presented in sections 2-5 of this paper. Le1 us 
start by combining the premiuni formula (3.12) with Theorem 5.1. Then we gel 
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A few final remarks peculiar t« the iump world can be given by considering 
16.8-10): The right-hand side of (6.10) consists in reality of  three terms. The first 

dt 
term can be interpreted as  the time impatient rate - of the market. 

V(~, ( t ) . t l  

V(X, , (~)  - t - VIx,i t l  
The second term can be written - r ,  AZF:(dz). 1 
which can be interpreted as  minus the expected value of the random intertemporal 
elasticity of substitution in aggreBate claim sizes in the market a t  time t. These 
two terms together correspond t o  what is known as  the subjective discount 
rate (of the representative agent. o r  the market as  a whole) under full certainty. 
Finally the third term can be written R,4(xM(t),t)[a,(t)iAi- A') - 

EzMlt)j. where R ,  represents the intertemporal absolute risk aversion coefficient 
inserted the aggregate portfolio in the marke t  This term reduces to 
K , ( x , ( t ) . t i [  Ez\,(t)l under risk neutrality. Thus.  the equilibrium real interest rate 
equals the analogous "suh.jective discount rate" plus this latter term. Notice that 
the presence of jumps has separated the relative risk averiion coefficient from the 
elasticity «f suhstitution. In models with no jumps. such a separation has usually 
only been achieved by the introduction of non-separable preferences For further 
discussions of these points in a financia1 economics framework. also related to 
the eqiiity premium puzzle. s e r  e.&. Aase [1992b1. 

In the case where the jump s i ~ e s  are s o  small that higher than second ordei- 
terms can be neglected. v+e obtain the limiting case that the riskfree i-ate equals 
the time impatience rate in the case when F and A are non-random Ido not depend 
upon w ) .  

Consider the discounted mal-ginal utility procesi in the market: 

nlicrc the last equality follows from (6.10) and (6.3). Thus V; i b  a (P. F,)-martin- 
i,.iIc. We are now back in the previous framework of sections 1-5. except from 
i l i c  flict that we still d o  not know whether or  not EIV;) = l .  If it is. then (3.23) is 
. L , : ; I I I ~  the correct representlition for V;. the discounted spot price process of risk. 

I Iic premiiim of a risk y can now be written 

~iiiiil;irly. the equilibrium market premium of the remaining risk in [t. TI equals 

I I I  the special case uhe re  the preces, {rlt). t t 7) is deterniinistic. (6.14) siniplifies 
(0  

\\here E"  is the expectation operator under P*. and where the associated density 
Iirocess o f th i s  change »f probability measure {V"it). t. E T} has a representation 
. i \  given in (3.23). This follows. since from the above definition of r. the expres- 

. which implies that 

I<{V*(T)} = I when r is deterministic. 
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optimal sharing rules which are linear. in which case optimal risk sharing is of the 
non-proportional type. 

Several similar computations can be carried out. for example to compute the pre- 
mium of a stop loss contract on insurer i's initially underwritten risk. Such illus- 
trations are presented elsewhere IAase 119921). Similarlv other preferences can be 
studied, e.g. v(z,) = exp{az, - In(ee"k)}, where oi > O is some constant. This 
corresponds to the Esscher model of actuarial science introduced by Bühlmann 
[1980]. In our framework this model corresponds to preferences represented by 
expected exponential utility. &,here the constant u may be derived from the indi- 
vidual parameters. together with the budget constraints and F' (dz). Some com- 
putations for this model are presented in Aase [19921. 

Ln the ahove examples the market attitude towards frequency risk could be 
introduced by letting the function pít) 2 Odifferfrom the constant l .  In the simple 
case where the market is risk neutral with regard to claim sizes. the risk premium 
«f z, equals 

I t  is seen from (7.18) that the risk premium is non-negative in the case where 
~ ( t )  2 I for al1 t E T. This corresponds to the insurers setting their premiums in 
the market according to a larger frequency of accidents í =  w(t)h(t)) than they 
expect to be the true frequency l =  Alti). P* has here the effect of risk adjusting 
the joint frequencv of claims in the market by a time dependent loading function 
~ ( t )  on frequency. ~iltimately determined by the market. 

Given the many different lines of reinsurance. our results can he interpreted 
roughly as follows: In some lines the uncertainty about frequency is crucial. hut 
claim sizes given that claims have occurred are not equally important. Within non- 
life insiirance auto insurance is an example. This is due to the dramatic effects 
weather conditions can have on claim numhers. such as icy roads in the winter 
time. wet summers etc. .  whereas repair costs are much easier to predict. given 
that the claim numbei-s are knuwn. 

I i i  principle is traditional life-insurance another example. disregarding unit- 
iiiihed products. Formally we do  not cover life insurancelpension plans in the 
iiiirdcl of this section. but the basic idea follows from the general theory of this 
1i.ipcr. Here the claim sizes are written into the contracts. so only uncertainty 
icc;irding the time points of deaths remains. The insurers usually have reliable 
iii<iriality statistics, so that the probability distributions. and thus the "forces of 
iiiori;ility" functions. are known. In principle risk neutrality ought to follow from 
< iiiiipetition and the strong law of large numbers, since the number of simil;ir 
~,iilicies that each insurer holds is usually large. In reality the companies use some 
kiiid of loading on the force of mortality. so that the term p ir larger than one for 
v~iiic t and age groups. and the life insurers are risk averse in regard to mortality. 
\iiiiilarly. for pension plans p is smaller than one. since overestimating the life 
I,.iipihs of the pensioners now gives the right safety margins for risk averse insur- 
< V I \ .  

I r i  other lines of reinsurance, like marine or  oil. claim sizes are considered to 
Iv the most important. This is because relatively few events happen. but given an 
.iicident the damage cost may take on a whole range of values, including very 
I.iipe ones. so that reinsurance is here a necessity. The market concentrates its 
~ititiide towards risk to claim size distributions in this kind «f business. since 
i~.i\ically only one accident can happen per contract. and free reinstatements are 
ii.ntiir;illy excluded from such contracts. 

Iii vet other lines both sources of uncertainty may be judged to be important 
1 i i i I  cause the reinsurers to hehave with risk aversion jointly on both frequency 
i i i i l  conditional claim sizes. This is perhaps the most natural situation. and one 
m~l>vi»us example is unit-linked life insurance (if stock market risk is modeled by 
t.iiidom measures instead of the usual diffusion processes). 

I i i  [he paper we have shown that any general risky treaty can be spanned by 
I I I C  i-andom measure u.  Moreover. any such risk can he decomposed into a pro- 
~x~ii ional  treaty and a general. non-proportional treaty orthogonal to this one. 
Uithin this framework we have demonstrated the existence of a stochastic equi- 
l~l>iiiim, and we have outlined how the ~inique proportional componen1 of an op- 
ti i i i ; i l  strategy can be found by dynamic programming. The model for the term 
.iiiicture of the interest rafe in this jump type model demonstrates some interest- 
I ~ I K  differences from the analogous continuous type models. In particular it does 
I I I I I  require as strong smoothness properties on preferences as does the diffusion 
il.i\cd analysis. Also the jumps turn out to separate the intertemporal elasticity «f 
,.iihrtitution from the coefficient of relative risk aversion. thus achieving much the 
\ . i i i i r :  as  non-separable preferenceb does in continuous type models. 

As our applications indicate. the different attitiides towards risk are quite nat- 
tii:illy modeled within the present framework. We observe quite generally that in 
ii,iiisurance the market premium of a risk typically depends upon: 

t i )  The stochastic properties of the risk itself. here represented by the marginal 
l<~i.;iI characteristics (h(t). FZ(dz)). 
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