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Dynamic Equilibrium and the Structure of
Premiums in a Reinsurance Market

KNUT K. AASE
Norwegian School of Economics and Business Administration. 5035 Bergen. Norway

Abstract

In this paper we present an economic equilibrium analvsis of a reinsurance market. The continu-
ous-time model contains the principal components of uncertainty: about the time instants at which
accidents take place. and about claim sizes given that accidents have occurred,

We give sufficient conditions on preferences for a general equilibrium to exist. with a Pareto
optimal allocation, and derive the premium functional via a representative agent pricing theory.
The marginal utitity process of the reinsurance market is represented by the density process for
random measures. which opens up for numerous applications 10 premium calculations, some of

which are presented in the last section.
The Hamiiton-Jacobi-Bellman equations of individual dynamic optimizafion are established for
proportional treaties. and the term structure of interest rates is found in this reinsurance syndicate.
The papert attempts to reach a synthesis between the classical actuarial risk theory of insurance.
in which virtually no economic reasoning takes place but where the net reserve is represented by
a stochastic process. and the theory of equilibrium price formation at the heart of the economics

of uncertainty.

Key words: Reinsurance. Exchange Equilibrium. Intertemporal Economic Model, Market Mar-
ginal Utility Process, Densities for Stochastic Processes, Random Measure, Marked Point Pro-
cesses. Dvnamic Optimization, Term Structure of Interest Rates. Incomplete Models. Non-Pro-

portional Treaties.

1. Introduction

We present an economic equilibrium model for a reinsurance market. in which
there exists uncertainty about the claim sizes in the market and uncertainty re-
earding the time points of occurrence of accidents. In this infinite dimensional
setting we first present a set of sufficient conditions guaranteeing the existence of
an economic equilibrium with a Pareto optimal allocation. A certain representa-
tion property of martingales 1s available, and any risk can be decomposed into a
proportional and a non-proportional component treaty. The market’s marginal
utility process is derived using the Saddle Point Theorem. The term structure of
short-time borrowing is found in the present model. and the premium functional
is established. using the density process for random measures. The Hamilton-
Jucobi-Bellman equations for marked point processes are established for the in-
dividual. dvnamic optimal proportional components of the reinsurance strategies.
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Finally we give applications of the general theory to premium computations in
reinsurance.

One of the most important results in this paper is related to an interpretation of
the marginal disutility process in the market. resulting in a splitting of the price
of risk into two components: One related to the claim sizes in the market. and the
other to the attitude towards frequency risk at each time instant. Given the diver-
sity of lines of reinsurance in the real world, our results can roughly be interpreted
as follows: In some lines the uncertainty about frequency appears to be far more
important than the uncertainty about conditional claim sizes. given that accidents
have occurred (e.g. auto insurance). In other lines it is the other way around, like
in oil or marine reinsurance, whereas in yet other lines both sources of uncertainty
may be judged to be of importance, and thus ought to be incorporated in a proper
analysis. In Section 7 we return to some examples. Another important feature is
the ciassification of any general risky contract into two components: one corre-
sponding to a proportional treaty. and the other to a nonproportional contract.
These two components are orthogonal, in & manner to be made precise in the
paper, where the proportional treaty is as closc as possible in some sense to the
general risk we started out with. Again “closeness”™ will be precisely defined
in the paper. Dynamic programming is used to find the optimal proportional
component of a reinsurance treaty. Also the term structure of interest rates is
dertved within the jump framework of the present paper. and several new aspects
emerge from this model. distinguishing it from the analogous continuous type
models.,

In our model for a pure exchange economy we assume that short-term borrow-
ing 1s possible, and the associated interest rate we ultimately determine endoge-
nousty. The vector of the portfolios of the 1 insurers. constituting the market. is
denoted by x(t) = {x,(t). x;(t). - - -, x(0)}, t € T = [0,T). At time zero x(0) equals
the initial reserves of the insurers held at the beginning of the period. and aiso
represents the coniracts that the insurers have negotiated at this time. After the
reinsurance treaties have been settled. insureri’s portfolio process, which we shall
sometimes call insurer t's cash flow or net reserve. is denoted by vt} t€ 7.1
I ={1.2. - - I}. Uncertainty is modeled by a filtered probability space (2, F.
{F\}. P) where the “usual” regularity conditions are satisfied. on which the vector
processes {x(t). 1 € T}and {y(t). t € T} are both defined. The filtration {F .} is right-
continuous. and £, O F..t = s. I = F,. The set of subsets F represents all the
events that could possibly be observed at time t by all the reinsurers. We assume
that information is generated by the process x. i.e.

F,o= o{x(s). s =t} te7. (1.1
so that the information the insurers are assumed to base their reinsuriance strate-

gics on at each time instant is solely based on past and present information related
to the net reserves originally given in the market. The insurers are assumed to

Lh
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have homogeneous beliefs represented by the probability measure P. In a n?insur-
ance market this is considered to be a reasonable assumption. sinc_e trade is sup-
posed to take place under conditions of umberrimae fidei, and no 1nformatu_}n %
presumed to be hidden. As the vector of initial net reserves x(t) qolves over tm_m.
the corresponding vector of actually held net reserves after reinsurance treaties
have taken place. y(t). can be continually renegotiated as uncertainty is revealed
bit by bit. in accordance with the preferences of the insurers, subject to the~budget
consiraints. and depending on past and present values of x(t), and ¥(t) (1.e. QC-
pending upon F,). The set of possible outcomes in the world is (_ienoted by Q. W!I_h
generic element w. Thus y,(t.w) = the present net reserve at time t of insurer 1 if
w € € is the state of the world. Throughout we make the square integrability

assumption

x(Ty & LY. F. P (1.2)

The paper is organized as follows: In Section 2 we present the economic model.
also containing the stochastic dynamics governing the process {x(0), t E T}. and
we give sufficient conditions for a static equilibrium to exist. In Section 3 we
derive the market marginal utility process and discuss proportional and non-pro-
portional treaties in relation to the presented model. Here we also expl_am what
we mean by a stochastic equilibrium. In Section 4 we indicate how opt.imal pro-
portional dynamic reinsurance strategies can be derived using §t0chastlc cont;-oi
theory in the case where a stochastic equilibrium exists. In Section 5 we establish
the existence of a stachastic equilibrium for the reinsurance economy under non-
proportional spanning, by using known existence results fro_rn Ih¢ correspondiqg
static model. In Section 6 we develop the term structure of the interest rates in
the present insurance syndicate. In Section 7 we present app!i_cations to premium
calculations in the reinsurance market. and in Section 8 we offer some concluding

remarks.

2. The economic model

2.1 Inrroduction

In this section we describe the primitives for a stochastic reinsurance exc?hange
economy: a model for uncertainty and revelation of informatiqn over time. a
collection of stochastic processes representing the insurance risks in the mar-
ket. endowments and initial net reserves. and preferences. The existence‘ u_m‘ a
static equilibrium is demonstrated in this section, first undler \iveak conditions
on preferences, later under more restrictive assumptions yielding stronger re-

sults.,
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D0 B netresenes

Weassume that the net reserves {x,(t). t&€ T} of insurer i can be decomposed as
lollow

N = oatt) — zdt), e/, te T, (2.1

Here ait) equals the assets of insurer i, which means the initial reserves plus
accumulated premiums in [0. t], and z(t) equals the total claims payments under
insurer i's contracts paid up to time t. The accumulated premiums must be deter-
mined endogenously. and we return to this issue later on. Consider the two quan-
trties

YV o(t.x) = de(s) (2.2)

[[RY

and

Viix) = - ” dxts). (2.3}

Ir

At each time t the vector V. (1.x) is the value of past premiums less claims pay-
ments of all the insurers in the market. and V " (t.x) is the {random) amounts of
future (inciuding present) claims payments less premiums (see e.g.. Norberg
[1990]). Clearly

V-itx) — vV (t.x) = x(T} foranvt e T {(2.4)

We are interested in the market value at any time t of V=(t.x). given the common
information £ available to the insurers at that time. This quantity we denote by
Vo (tx). and we may call it the prospective F-market value at time t. partlv in
accordance with actuarial terminology. Since the terms “net reserves™ are usually
used in connection with the quantities V- and V-, the equations (2.2)~(2.4) justify
our usage of this term for x in the absence of discounting.

The claims process z(t) = (z,(t). zytt), - - -, z,(1)) in the market we assume to be
4 marked, discontinuous jump process, where the marks signify the different (vec-
tor valued) claim sizes at distinct random time instants of accidents in 7. This
seems like a most natural model of ¢claims in any insurance market. In actuarial
risk theory one classical univariate example of such a process is used in the Lund-
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berg model. where z is a compound Poisson process. Formally and more generally
we assume that z can be represented as a stochastic integral over a random mea-
sure viw. A: ). denoted for short by zev. as follows (see e.g.. Gthman and Sko-
rohod [1979a])

1
Z(t) = z=v = ffj uv(du: ds), te T, (
o K-

where R, = [0. =). and the multiple state integral is over the set
R = R, x--- x R, (Itimes). Here v(A; t) is the number of jumps the process
7(s) makes in the time interval (0. t] with values falling in the set A. _A E
B, . where B, equals the Borel measurable subsets in R!, . The interpretation is
that at random time points 7,. 7, - - - events happen and a corresponding sequence
of claims u'"”, v, - - - with values in R', are realized. We assume that the (P, F)-
predictable intensity/transition kernel A*(w.t: du) associated with the ra.n.dom r.ne?a-
sure v. the dual predictable projection of v, can be factored into a conditional joint
probability transition kernel Fi(w.t: du} and a non-negative F-predictable inten-
sity process M(w.t) as follows

2
Lh
—

At da) = AM(0FAE du) teT, well, (2.6)
A process is called predicrable if it is measurable with respect to the U'fie,l.d P(F)
on () x T generated by the left-continuous F-adapted processes. Intu1t1vely a
process alt) is predictable if the vathaes of aft) can be determined from information
available up to, but not including time t for eacht € T.

The relation between v and A4(t: du) is given by
T T
F,{ j ” ur{du: dl)} = E{ J jf ur AL du)dt}. (2.7}
[ Rl .
0o

o ®

Let h(t,u} be any real function such that the stochastic integral

t
[ ” h{s,w)v(du: ds)
o ®

is well defined for all t € T. Suppose the function is measurable with respect to
P(F) = P(F)®B . Any P(F,)-measurable mapping h: T x 1 x R, — Ris usu-
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vy borall oo L PPy Iy € 1O, FOP) . vE Z)is convex. (v) x, € LY,
PP s et cera 8,

Phese assomptions may be iterpreted as: (i) strictly monotonic preferences, (ii)
contimuons preferences, (i) the aggregate initial portfolio in the market, the mar-
ket portlolio vy, is extremely desirable, (iv) convex preferences, and (v) the initial
porttolio of cach insurer is not identically equal to zero (with probability one).
Prom tiny and (iii) it follows that >' has a continuous utility representation U'(-}:
[16r. F.P), — R. Assumption (iii) can be considered as a smoothness condition
on preferences and a strengthening of monotonicity. It holds automatically if there
ix continuous, positive linear functional = such that w(y) = 7(x) whenever y='x.
Conversely, if >'is convex. then uniform properness implies the existence of such
a functional. Thus, under risk aversion uniform properness is equivalent to a lin-
ear premium functional. which is precisely what we want,

. Let us assume that there exists a market for the insurance contracts. The re-
insurance syndicate Lloyd’s of London used to be known for precisely this; any
risk could be insured. and the market would eventually, through a negotiatioﬁ
process. arrive at a market premium. In order to prevent arbitrage possibilities
the premium w(-) must be a linear functional on LXC, F. P). As an illustration
FJf this point. assume on the contrary that m(y, + v.) > mw(y,) + =(y,) for two
Insurance risks v, and y.. Then one agent could insure the bundlek(y, + y.)
and reinsure separately y, and y,. The cash flow at time zero equa[s
[y, + y¥.) — w(y,) — y.)] = 0. whereas the cash flow at the terminal date T
eguals =y (T) + ¥(T) + v(T) + vo(T) = 0. This strategy leaves no obliga-
_Ilons at the final time, so this strategy identifies a riskless profit at time zero. This
Is 4 money pump. or a “free lunch.” which is inconsistent with an economic equi-
!lbrium. In the case where the inequality is reversed, the strategy is of course to
Insure separately ¥, and y. and to reinsure the bundle (y, + v,).

Assumption 2.1 is not necessarily the weakest that can be found. If the prefer-
ence relations are represented by utility functions of the form E{u(y(T)}, then
sufficient conditions for assumptions (i){iv) are that u(-) be concave, stricﬂv in-
crleasing with a right derivative at zero and that x,(T) is bounded away from zero
with probability one (Duffie {1986]). Uniqueness of equilibria in a financial eco-
nomics setting is discussed by Karatzas, Lakner, Lehoczky and Shreve [1988]. In
the same type of models Araujo and Mouteiro {1989] have pointed out the restric-
tiveness of assuming that x,, (or aggregate endowments) is bounded away from
zero,

2.4. The existence of a static equilibrium

Hefe we demonstrate the existence of a competitive equilibrium with a Parcto
Qp[lmal allocation. We do this by demonstrating the existence of an equilibrium
n the usual Arrow-Debreu-Borch sense for the insurance economy, which we
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denote by /1E = (X,, x;, =1 € ) where X, = L*Q, F, P)_. For such an econ-
omy every time-state " Arrow security” is assumed available for reinsurance trea-
ties at time zero, leaving no incentive for markets to remain open after time zero.
The introduction of this static economy in a dynamic setting may seem, at first
sight, to be purely a matter of ones imagination, since the number of states is
uncountable. Also the dynamic feature of the economy is not transparent and can
not be exploited in this framework. Nevertheless, it turns out to be a useful con-
struction in the development of a dynamic description of an equilibrium. A key
point is that we may “‘implement” the dynamic model in a static setting, and since
we know that there exists an equilibrium in the static model, we can exploit this
fact to construct an equilibrivm also in the dynamic economy without the use of
dvnamic programming technigues. This last point is noticeable, since dynamic
optimization for stochastic processes of the kind we are considering in our model.
is a rather delicate matter which requires certain heroic assumptions on behalf of
the insurers.

A static equilibrium for IE is defined as a nonzego premium functional = on X.
initial portfolios x; € X . and reinsurance treaties y; € X satisfying forall i €/

A4y

wy) = wlx), (
(2.15)

v o>y = omiv) = owlyh)

12 2

and

DV DX = X (2.16)

=¥ =f

[n a reinsurance setting this definition of an equilibrium was first formulated by
Borch [1962] in a one-period model. Condition (2.14) corresponds to the budget
constraint in conventional microeconomic analysis. The insurer no. i may improve
his position from a risk-sharing perspective in accordance with his preferences,
but the market value of his portfolio will not change (increase). Condition (2.15)
states that each insurer’s final portfolio is optimal according to his preferences.
Condition (2.16) follows since the I insurers are assumed to exchange parts of the
risks only among themselves. The following result can now be shown:

Proposition 2.1 Under Assumption 2.1, IE has a static equilibrium with a Pareto
optimal allocation, where the market premium functional @ is given by

w(y) = E{V(T)y(TH, (2.17)
and where VITY E X . [
Since X is its own dual space, the representation in (2.17) follows in the first place

from Riesz’ representation theorem for linear functionals on L€, F, P). The ad-
ditional fact that V(T) € X _ requires of course separate arguments.
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The prool of this result can be found 1n Aase [1990]. It follows by techniques
which by now ure becoming standard. references to which can be found in. e.g..
Duffic | 1986].

2.5, Expected wtility

Since our goal 1n this paper is not to present the most general behavioral assump-
tions under which interesting results can be proven. but rather to present distri-
butional realism on behalf of the risk processes in the reinsurance market and
make a synthesis of this with the economic theory of uncertainty. let us specialize
to the case where preferences ' on X_ are represented by expected utility
E{u(y(T)}. where u,(-) > 0 and uj(-} < 0. Conditicn (2.15) can now be formulated
as follows: Agenti’s problem is to find a function v(-) such that

max E{u(y(x(T)} (2.18)

yilnEX
under the budget constraint
Tly)) = 7ix,). i€ [ (2.19)

Since the premium is a linear functional on X. by the Riesz™ representation theo-
rem there ¢xists some function V € X such that

mx) = E{x{(T)V} for all x € X. (2.20}

We now adopt conditions guaranteeing the existence of a competitive equilibrium
with an interior optimum. In the literature one such condition is known as the
inada condition (see e.g.. Duffie [1988]}). Denoting by Utv) = Elu(y(T)}. the
technical term is that U' is additively separable and regular (u,). This involves
smoothness conditions on u,. and in addition it is required infinite marginal utilities
at zerg, Unfortunately this unboundedness is also inconsistent with the proper-
ness condition in Proposition 2.1, Given that there exists an interior solution to
(2.18-19). it can be characterized as follows: Forming the Lagrangian of this prob-
lem, we seek the saddle point of

Lty,in) = E{uivix)) — Mvix) — x)V} (2.21)

Because of the concavity of the Bernoulli utility functions u,, the necessary and
sufficient conditions for an interior optimum are given by the Euler equations

u(yvix(Th) = AV, i= 120 L P-a.s. {2.22)
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The economic interpretation of V=V (T xAT). - - -, x4TY) is that it represents
the market marginal utility at x(T). Some immediate consequences of (2.22) are:

V o= VIx,(T), xAT), - - - x(T) = Vix(T))  P-as. (2.23)

where x, (T} = Z,c; x,(T). so that only changes in the aggregate market portfolio
Xy affects the market marginal utility. This follows from differentiating (2.22)
along x,. Similarly

Vix(T)) = yilxy(T), i=1,2,--- L P-a.s.. (2.24)

Thus only changes in the aggregate market portfolio x,,(T) affects the optimal final
sharing rules y,. In the static model this means that the reinsurance syndicate can
hand in all their initial portfolios to a pool, and let the pool’s clerk distribute parts
of X, back to the syndicate members according to the optimal sharing rules
yi(X4(0)). Then the market closes, and reopens at time T. where v(x(T)) is real-
ized by insureri, i = 1,2, - - L

Pareto optimality is established along the following lines: It is known that Par-
eto optimal sharing rules are found by finding functions y(-}. such that the random
variables y,(x(T}) are square integrable and solve the following

max_ E{> ku(y(x(Tim} (2.25)
vl L- e=f
such that (2.16) holds P-a.s.. where k,. k. - - -, k| are arbitrary positive constants.
The associated Lagrangian of this problem is
Liy: Mx)) = ELD2 ku(yix(Tn) — Ax(T) Syx(TH — x(THk (2.26)

icCy e/

where the Lagrangian multiplier A(-} is now a Borel-measurable function, meaning
that A{x{T)) is an Fr-measurable random variable. The first order necessary and
sufficient conditions for an interior optimum. given that it exists. are again given
by the Euler equations

Kudyix(T))) = Ax(T)), ici, P-a.s., (2.27)

which is seen to be equivalent to {2.22) after identifying V(x) with A(x) and k; with
A, ', This explains why V(x(T)} can be thought of as the shadow price per unit of
P-probability when x(T.w) = x(T}. Thus the optimal solutions y; also satisfy col-
lective rationality, or Pareto optimatity. From the very formulation of the problem
in (2.18-19) it also follows that they must satisfy individual rationality, given that
this problem has a solution. Under very mild technical conditions. it was shown
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(see Du Mouchel [1968]} that there will always exist at least one Pareto optimal
treaty. We now have the following:

Theorem 2.1: Suppose the prefercnces = on LA, F, P) are represented by
Uitv) = Eludy(T));, where U'is additively separable and regular (w,). If the ag-
gregare market portfolio x,(T) is bounded away from zero with probability one,
then the static reinsurance economy IE = (X, x,, =, i € [) has an equilibrium
with a set of Pareto optimal allocations y(x,(T)), i€l, satisfving individual ratio-
nality. The equilibrium is characterized by (2.22) and (2.27). The premium func-
tional is given by w(y) = E[V(x(T))¥(x,(T)j], where the market marginal utilirv
Vis determined from the individual preferences by (2.22) and (2.23). [

So far we have not utilized the increasing information flow F,. nor have we
discussed the construction of dynamic strategies producing the optimal portfolios
y;. In order for the theory to be useful. there must exist some strategic reinsurance
treaty available to each insurer. such that the agents can adjust their net reserves
in accordance with preferences as uncertainty resolves itself with time. [n the next
section we show how our “static,” infinite dimensional problem can be reduced
to a certain finite dimensional one, with an explicit dynamic description. In Sec-
tion 5 we shall demonstrate the existence of optimal strategies by implementing
the static model in our dvnamic setting.

3. Dynamic equilibrium in the reinsurance economy /£

3. Introduction

The economy analyzed in the preceding section is essentially a static. one-period
infinite dimensional space-time decision problem. In this section we first reduce
it to a dynamic (I + 1)-dimensional decision problem for each t € 7. To this end

consider a net reserve process X, € X, and let h{t, w) = (h,. h., - - -  h)(t. u) be a
predictable. R -indexed process satisfving

.
E[[ jf | x-h(t, u)
0 R

We define the set L (x) to be the following:

3}\Z(E)F,’(du)dt] < >, 3.0

o
-2

[(x} = {h: h(t, u) is predictable and R’ -indexed. satisfving (3.1)} (3.2)
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For any process b € 17(x) the stochastic integral [w

” his.ulv(du: ds) s well
L

defined. and is a {P. F,)-square integrable martingale.

3.1.1. Proportional mreaties. Now. with some abuse of notation. let h(t.w) = h(t‘?c)
be a P{F,)-measurable process. For the model in Section 2 the following stochastic
integral is also well defined

[ h(s.x)dxis) = fw | h{s.x(s)) f[ ahiF(da)ds
[0 ot

R

- his.xts)) - [J zvidz: ds).  (3.3)

1| J
al

Here we interpret hil. x) as the fraction of the initial portfolio x(t) held by some
insurer at time . if the net reserves in the market at this time equal x{t}. This
strategy satisfies the budget constraints of the insurer if

t

hit. x)x(t) = h(0. x)x(0) — | his. x)dx(s) forallt = T. (3.4}

This regquirement here means that the final value equals the initial value plus any
gains and losses incurred from proportional reinsurance treaties settled in (0. ).
new risks undertaken and claims incurred following the strategy h. Note that a
single contract need not be “self-financing.” since settled clatms may require pay-
outs. and premiums may be paid in on a weekly. monthly or annual basis. as a
rate or otherwise. The equation (3.4} is a budget constraint on the total activity
of an agent.
It follows from the product formuia that (3.4) implies that

3

J'x{s—)dh{s. x) =0 forallt € T. (3.5)

o

Returning to equation (3.3), the stochastic integral there may be interpreted as
the gains and losses from following a proportional reinsurance strategy h in [0. t].
Let h'(1. x) be insurer i's strategy. i = 1. 2. - - -, . By definition h"{0, x) = &
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(Kronecker’s delta) and any admissible (i.e., square integrable) reinsurance strat-
egy h"' must satisfy

Zh_i“([, x)x(t) = J >his. x)dxi(s)
e g '

t

= x(0) + J'Zhj”(s. x)dx{s). i€ [, te T. (3.6)
o it

Let M be the set of reinsurance contracts that can be generated this way. In gen-
eral M s a closed subspace of LY. F.P), which follows from the Kunita-Watan-
abe inequality: Convex combinations of proportional reinsurance treaties are
again proportional treaties.

3.2, Market premiums

In this economy we first take as a numeraire a pure discount bond which pays at
the terminal date T one unit of account. This asset we denote by x,. where
xp(t) = 1 for all tET. As a consequence the market premium of x,. m(x,) = 1, or,
stated differently. w(x,) = E{V(T)x,(T)} = E{V(T)! = 1., where V(T} is the same
as in (2,17}, Also V(T,w) = 0 P-a.s., which means that we can define a new, bona
fide probability measure P* by

*

dp
—— = V{T). AEF. 37N

P*(A :JVT, dP(w),
(A) (T, w}dP(w) 4P

A

Here V(T) equals the Radon-Nikodym derivative of P* with respect to P. Denoting
the expectation operator under P* by E*_ it follows from (3.7) that the market
premium at time zero of any portfolio x € X can be written

mx) = E{V(Tw(TY = EX*x(T)}. (3.8)

The prospective F-market value at time t, V! ((,x) = E*{f d(—x(s) | F} =
1t.T)

~E*x(T) — x(t—) | F}. and from assumption (1.2) it follows by Holder's in-
equality that E*{x(T) | F,} is a (P*, F,)-martingale. The market value of the accu-
mulated future claims payments less premiums can alternatively be expressed us-
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ing the given probability measure P and the market marginal utility V(T). Define
the market marginal utility process by

Vith = E{V(TY | Fl.te T Pas, (3.9)
It follows that V(t) can be interpreted as the “spot price of risk™ at each time
instant t. Using the notation w(x}t) = —V7it.x), it now follows that
1
a(x){) = E*x(T) — x(t )| F} = E*{f dix(s) | F} = Bl Vis)dx(s)
(%3] Vit) T
VIT)

1
- - F! = —F (T) | - -). i
vm("m x(t—)) | Fi} V([)F{V(T)xLT)iF{} x(t—). The third

equality follows from the change of measure. the last from the definition (3.9) and
the adaptedness of the processes x(t) and V(t). The fourth equality follows from
a result due to Dellacherie and Meyer [1976): Let A, be an increasing process
adapted to F,. and let M, be a nonnegative (P, F))-martingale. right-continuous and
uniformly integrable. Then for any F -stopping time ~+ the following holds true

FI}:E{

F.{ [M(t)dA(t)} = E{ M(T!A(T)}. (3.1

n

Thus we can write

1
EMx(T) F} = VmE{V(TJx){T) | F}.t € T, P-as. (3.1

It follows in the same way that the market premium of any risk v at time t. t.e. of
the remaining risk in [t. T equals

1 _ . .
wyHY = mb{J Vvt LE = EXT) R - ovies), (3.12)

3.3, The representation property for martingales

The theoretical results of the preceding sections allow us to conciude that the
market value of an insurer’s net reserves must depend upon (i} the stochastic
properties of his net reserves. (i) the stochastic relationship between his partic-
ular reserves and the accumulated reserves in the market and (iii) the attitude
towards risk in the market. Starting with a set of utility functions for the individual
insurers. it seems rather complicated to derive explicitly a formula for V{x,(Th
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tions of the above kind such that lim h"(t.w.u) = hit.w.u) for all (t.eu & T

It
x 1 x R'.. Suppose for any martingale y the function hit.w.u) is determined by
equation (3,21} and suppose that the functions ¢! in the determination of hit.w.u)
satisfies

jl | ” h{s,u) - uv(du; ds)
it I
R+

:f llmZ hi'(s,w) - H bl (wuidu: ds) {3.22)
{

Ol j e T2

= j] ‘ his.w) - ” uv{du: ds).
St
. i

In this case our model can be described by proportional treaties only. and

H

vit) = vi0) + [h(s)dx(s). 1€ T. (3.23)

The property (3.21) 1s often called the representation property of v relative to x
under P* in probability theory, but for our purposcs we see that this terminology
may be somewhat misleading. since we should like to reserve this property for
the cases where the equation (3.23) holds instead. The terms ht.u) in (3.21) in-
volve non-linear reinsurance on the sizes u'™ of claims in the market. If (3.23)
holds true. any reinsurance treaty can be obtained from proportional ones. Under
Assumption 3.1, if ¢3.21) and (3.23) coincide. then Af = If, where H is the space
of squarc integrable P*-martingales. In general is the representation in (3.23) more
restrictive than the representation result (3,21}, so that M C J{. Restricting atten-
tion to the set of proportional contracts A, this does not necessarily only limit
the reinsurers to proportional treaties, as may be indicated by (3.23). The point is
that any reinsurance treaty in M, nonlinear or otherwise, can, at least in principle.
be attained by a suitable proportional dynamic risk sharing strategy with contin-
uous trading,

3.3.1. Non-proportional reinsurance treaties. Suppose now that M = H, Non-pro-
portional treatics such as excess of loss or stop loss reinsurance do exist in the
market and can be traded directly. The representation (3.21) involves such trea-
ties. Since fransaction ¢osts can be substantial in reinsurance markets due to the
extensive usage of professional brokers. clearly a proportional representation
such as (3.23). if true. is mainly of theoretical interest. However. there mayv exist
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treaties. wanted by some reinsurer, that is not available for direct trade. By the
representation (3.21) the reinsurer could in principle manufacture this treaty him-
self by a suitable dynamic risk sharing strategy. Now. since M is in general a
closed subspace of the Hilbert space A, we know that there exists a unique pair
of linear mappings f and g such that any y & H can be writtenas y = fly) + glv).
f maps H into M, g maps H into M~, where M~ is the set of all v € H which
are orthogonal to every z € M. By orthogonal is here meant that E*(z;y) = 0.
If v € M, then fly) =vy. gly) = 0. if v € M-, then fly) = 0, gly) =y
Also () | y—fty) | =inf{|| y -2z | : z € M if yv & H. (i
[ v 2= ftv) ||* + | e(y) ||°(here again norm is with respect to E*). Now.
it v is some contract that can not be represented as in (3.23), but if x is a vector
martingale with respect to P*. a projection theorem due to Kunita and Watanabe
[1967] allows us to replace (3.23) by

t

v(t) = y(0) + Jh“‘(s) - dx(s) + mit) P*-a.s.. (3.24)

(0

where m(t} is a martingale which is P* orthogonal te x. m{() = 0. Correspond-
ing to the general theory, m(tye M. or g{y) = m and f{y) = [h% - dx. Following
Follmer and Sondermann [1986]. we can define a “cost process™ by C(h)?® =
h3(t) - x(1) — [KSs) - dx(s). and it is clear that under proportional spanning
{t

C(h® = h>0) - x(0). which is the “arbitrage price” of y. Follmer and Sonder-
mann show that if the strategy h® is y-admissible and the cost process C/h®) is a
(P.F }-martingaie. then there exists a unique proportional strategy h®¥ which at
each time t € [0.T] minimizes the following measure R (h} of expected remaining
cost E*{{C1th) — C(h))* | F.}. In general terms we could say that it is possible for
any general, non-proportional treaty {y. h(t.u)) to find a unique proportional treaty
h3(t) corresponding to an element in M as ““close as possible™ to v. where as close
as possible also could involve mimimizing the measure of risk R, (h). The results
of Follmer and Sondermann have been generalized to the case where x is a semi-
martingale under P* by Schweitzer [1988].

Under Assumption 3.1 there exists a umique V. to be determined in the
next section. such that our pricing results are still valid. This follows since
wy) = E*y(T) = y(0), as E*(m(T)) = 0 since m is a P*-martingale which is
zero at time zero, We may consider the term m as a “‘nonsystematic™ part of the
overall risk y. This term can obviously be written

1
0

m, = J( JJ h(s.u} - ui{du: ds) — hf’(s)dx(s)). (3.25)
R ’
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i.e.. as a difference between a non-proportional and a proportional treaty. both
(P*. F)-martingales.

3.4, The market marginal dis-utility process

Returning to Section 3.2, we can now give a characterization of the Radon-Ni-
dp
pealing again to resuits in Boel, Varatya and Wong [1975] and Jacod [1975]. we
have the following density process for our model

kodym derivative V(T) = in (3.9} for the measure P* in Assumption 3.1. Ap-

Vit)y = (II plr vz s )i, = t)) :
nl : (3.26)

exp{f ” [T - }L(S)V(U.S)]?\fFf(du)dS}. teT.

{the product [, | is taken to be 1 if 7, > t). Since E{V(T)} = 1. it can be shown
using the Doleans-Dade expenential formula that Vi) = EIV(TY | F,} P-a.s.. so
that V() is indeed a (P, F,)-martingale over 7.

We now turn to the economic interpretation of the two new terms appearing in
(3.26) as well as in Assumption 3.1: The process v is a random measure under P*
as well. and the claims process {z(t),t&T} is still a random. marked point process
under P*, but now with local characteristics {pA,, v(z. OF%t. dz)}. Combining this
with Theorem 2.1, we have that the function v(z, t) = v{zy, t) forallt € 7, where
Zy = Xi.sz(t). Furthermore, since the function v(-, t) is itself a Radon-Nikodym
dertvative of the new cenditional claim size distribution under P* with respect to
the old one under P. v(z,,. t) can be interpreted as the marginal dis-utility of ac-
curnudated claim sizes in the market at time t. In a market of only risk neutral
members. vizy. U= I forall(z.t) ER', x T,

Jumps, or claim sizes are not the only source of uncertainty in this model. The
time instants 7,(w) when accidents occur are random as well and the (requency is
measured by Mw. t), which is itself allowed to be an F-predictable stochastic
process. The process plw, t) thus measures the attitude towards freqguency risk in
the market al each time t € T. In actuarial terminology one may perhaps say that
p corresponds to a loading on frequency. We return to specific examples in Sec-
tion 7.

Notice that the above is formulated in terms of marginal dis-utilities on claim
sizes. A natural reformulation can be given in terms of marginal utilities on net
reserves, or v(zy, t) = Viay(t) — zy. 1). Below it will be convenient to work with

STRUCTURE OF PREMIUMS IN A REINSURANCE MARKET 113

v instead of ¥, but we should keep in mind that the market premiums also depends
on ay(t) = the total initial reserves at time t allocated to the line of reinsurance
under consideration.

Since the ait}-process of assets in the market stem from incomes through market
premiums, clearly this vector stochastic process must depend upon market pret-
crences, and thus be determined endogenously. The precise form this takes in a
stochastic equilibrium is given in (3.15) and (3.17), with the above interpretation
of the terms v{-) and w{-). The linkage of a(t) to the market now follows, since the
pair (. v)in (3.15-18) is the same as the functions appearing in the expression
for V(T) given in (3.26). Since V(T) is determined by the market participants. so
15 a(t). This should also be compared to the classical Lundberg model of an insur-
ance company, where the incomes process is given exogenously as a linear func-
tnon a(t) = ct. where ¢ > (}is a constant, In this latter case no economic theory
is used. and only one company is considered (Lundberg [1926]). [t is remarkable,
though, that this theory was developed before the theory of stochastic processes
was formally established.

3.3, Srochastic equilibria

l.et v be any portfolio of any of the reinsurers. We call a reinsurance strategy
hit.u) € LAx) budget feasible if

vt} = I f{ his.u) - uA(s)F*(s:du)ds
I4.] f('_ (3.27)

— j fJ' h(s.,u) - uvidu:dsj, teT,

I
o R,

and it is optimal for insurer i provided there is no other budget feasible strategy
{w. g) such that w ='y. Notice that the predictabulity requirement means that h,
gives the position of the reinsurer after the last treaty adjustment before time t,
but h, does not depend upon the values of x(t) af time .

A stochastic reinsurance economy [F; is now defined by the triplet £, = (IE.
{F}. LAx)), and a stochastic equilibrinm for IE is a collection (7. X, y;. h"' (tu);
i€ /. t= T} where = is a market premium functional for [E.. {yv, h'™(t,u): i€ [, t€
T is an optimal reinsurance strategy for each insurer i € I such that markets clear
P-a.s.:

Dty = DX, te T, (3.28)

&=/ 1 f
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and

2 ht.u) = 1. te T, u=R!'. . (3.29)

r

The dynamic type of equilibriums. of which the above is a special case. were first
studied by Radner [1972]. In Section 5 we demonstrate the exjstence of such an
equilibrium in our reinsurance syndicate.

4. The individual dynamic optimization problems—proportional treaties
4.1. Introduction

In this section we present the individual insurers” dynamic optimization problems
tn some detail. As is usually the case with dynamic programming. a set of rather
strong assumptions is required in order for the problem to be guaranteed a solu-
tion. Instead of concentrating on the economic contents of such conditions in this
section. we defer to Section 3 to demonstrate sufficient conditions for the exis-
tence of a stochastic equilibrium. Therefore our presentation in this section is
somewhat heuristic. We shall only be considering optimal proportional treaties in

what follows,

4.2. 1to's generalized lemma and the Hamilton-Jacobi-Bellman equations
Each agent 1 € { has to solve the following:

max E{u(v,(TH 4.1
it

k' Hix)

subject to the budget constraints

t

v = 2h¥txxit) = x(0) + J Shisxidx(s). 1€ T (4.2)

i=f , =

where H{x) is the set of permissible. square integrable proportional strategies h"
such that the budget constraint (4.2) holds. Let y; = y(t) and define for each
reinsurer 1 € [ the following indirect utility function

Zit.y) = sup E{uy(Tn| F} forallt € T. (4.3}
e He
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Notice that the budget constraint (3.4) together with (3.6) yield the present budget
constraint (4.2}, Clearly the indirect utility of each insurer must depend upon the
market preferences. since the transactions implicit in (4.2) are assumed to take
place at market prices. _

Under certain smoothness conditions the functions Z(t.y;) may Sgtlsfy' 4 non-
linear equation of parabolic type. a generalized version of the .Hamllton-Jacohl—
Bellman equation: Starting with the model for the net reserves in the market

t

x(t) = x(0) + f JJ a(via.s) — DIFd(da)ds

1
0 B

t
— f ff zi{dz: ds). teT. (4.4)
o R

we need [10's generalized lemma. which in our model takes the following form:
let G(t. x) be some continuously differentiable function in the first argument. twice
continuously differentiable in the second. Then (see ¢.g.. Gihman and Skorohod

[1979 a-b])
t

e [ oG o
Gltx(ty = GIOx(0) + ‘ (:; {s.x(shds +~ f J Z] x (s.x)a(p.via.s)
4o PR

! 0 f-

1

— DANFHdayds - J' JJ LYG.z)(sIneFr(dz)ds

I
o B

1
— f JJ [G(s-.x(s-} - Z) — G(s—.x(s-))]f){dz: ds). (4.3)
o R

where

LYUG.zMs) = [G(s.x(s-) — z) — G(s.x(s-)

+ > E (s,x(s-))a(s)}. se 1. (4.6

ier X
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4.3. Optimal Markovian strategies

Suppose there exist functions Zi(t, y). t € T.1 = . 2. - - - 1. continuously differ-
entiable with respect to t and twice continuously difterentiable with respect to the
second argument satisfying the boundedness conditions | Z,(t. v} | = C({1 + y).
. d & . . .
(_:— Zit.vy | =Cil + |y ]| P Zt, y)| = Cli€ L. and the generalized Hamil-
Y ¥

ton-Jacobi-Bellman equations (4.13} as well as the terminal condition {4.14).
Then under the above stipulated conditions the functions Z(t.y) coincides with
the indirect utility functions of each of the insurers using admissible stra-
tegies h'' € Hi(x). Moreover there exists a set of 1 optimal Markovian
strategies h'(t.x) = ¢'{t.x(t)) provided there exist Borel functions &''(t.x),
(t.x)ET x R!. satisfyving the equation

sup LyaZ(t. v;) = Ly, Zdt, v). (4.15)
thH

If this holds true. the Hamilton-Jacobi-Bellman equation can be written

| % — Ly JZL ). =12 L (4.16)
subject to the usual terminal condition (4. 14}, As soon as we have solutions to the
system of equations (4.16), it is relatively easy to construct the optimal propor-
tional strategies &'"(t.x(0)) for each of the I insurers from the insurers™ indirect
utility functions Z,. Just solve the maximization problem (4.15) for each i € {, that
is. the original dynamic optimization problem under uncertainty is reduced to the
easier problem of finding the maximum of a real function defined on R

Notice that the term L* contains the market attitude towards frequenty risk p
and towards claim size risk v, so that the optimal strategies ¢'" must also depend
upon market preferences. This is quite natural. since the premiums that the agents
face at each transaction depend upon the market attitude towards risk. as we have
pointed out earlier.

[n the cases where we know that a set of optimal strategies ¢'"(1.x(1)) exist for
the I agents, then we can use (4.15-16) to construct this set of strategies. In the
next section we demonstrate the existence of optimal strategies.

In the Markovian case treated in this subsection we could alternatively have
used the infinitesimal generator approach.

For an example of the solution of an equation of the type (4.16) subject to
boundary conditions found tor R&D-problems. see Aase [ 1985].
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5. The existence of a stochastic equilibrium—general non-proportional treaties

s 1. Introduction

In this section we demonstrate the existence of a stochastic equilibrium as it 1s
defined in Section 3.3. The market assumptions of Section 3 are in force. In par-
leular there exists some probability measure P* equivalent to the originally given
i wuch that any martingale y can be represented in the form of (3.21). When this
lolds true. the resulting partial equilibrium has the property that a small number
of risks is sufficient to dynamically span the high dimensional space of all risks.
\lthough markets are not complete at any given time. the random measure v spans
the space of all possible risks. proportional as well as nonproportional ones. We
now turn to the first result in this section.

v 2. The existence problem
I'he following result can be proved:

Proposition 5.1: Under Assumptions 2.1 and 3.1 the insurance economy 1Eg =
i1, {F}, LAX)) has a stochastic equilibrium with a Pareto optimal allocation.

I'oof: Let (w. vy i € D be the static equilibrium for the insurance econ-
omy fF guaranteed by Proposition 2.1. where the premium functional
mv) = EIVITwTY = E*{y(T)}. vEX, and where V(T) is the market marginal
mility and V(t) = E{V(T) ! F,} can be thought of as a market "spot price process
of risk™ at each time t £ T. Note that this result does not depend on any kind of
dynamic spanning. Consider the (P*, F,)-martingales w;(t) = E* {y{(T) | F} for
cach i € [. Clearly w, is optimal for agent i in the static economy, since
w{T) = y(T). By (3.21) there exist strategies h'" € L’(x) such that

wit) = " J'j zﬂz,h_:”(s.u) - u;p{du:ds) i=12---LteT (5]

i RL

The budget constraint {3.27) is satisfied under P. By the projection theorem (5.1}

4

can be replaced by wit) = x{(0) + Jh“"s(s) - dx(s) + m'(t), where mis a P*-mar-
1]

tingale orthogonal to x. m(0) = 0, and where h"'* is the associated proportional

treaty closest to h'", By taking expectations in (5.1) under P* and evaluating at

| = T. the terminal time, we get from this representation and the martingale prop-
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erty of x(t) under P* that E¥{w,(T} = E¥v(T}} = E*x;(0)} = E*{x(T)}. which
1s the budget constraint (2.14) in the static economy. Thus, by using the reinsur-
ance strategy h'"(t,u) and faced with a time zero portfolio x{(0) and market pre-
miums w(x;) = wly;} = E¥ {y(T)}. insurer i can precisely obtain his optimal net
reserve y, in the static insurance economy IE.

Suppose insurer i can obtain a strictly preferred portfolio v, >’ w, by adopting
a different reinsurance strategy g © L(x). We call the associated unsystematic
risk components m#(t). Then the market value m must be strictly larger. i.e.,
E* {v(Th} > E* {w,(T}} = E* {y,(T}}. Substituting the budget constraint for v,, we
get

i
E* 2 ST, x)x(T) + mT)} > E* {y(D)}

j=u

or,
T

E*{x;,(0) + [g'“'s(s. xhdx(s) + mHT)} = E* {v(TH,
&[l

ie. E* {x, (T} = E* {y(T)}. But this contradicts the budget constraint (2.14) in the
static reinsurance economy fE. Thus (h'". w;) is optimal for insurer i. and such a
plan can be chosen for each 1 € I. Suppose we replace the strategy h'" chosen in
this way by

It

hJ.[I]([.ll] -1 - 2 hi*taw), j = 0.1, 2. -

. LteT.ueR!'. (5.2}

i=1

This is a permissible strategy since h™" & L(x) as well. Also h™' generates the
same optimal portfolio w, as does h'" To see this. first observe that from linearity
of stochastic integrals

I
2 Jm ‘ jJ (l — Eg—ih},)(s.u))ujf)(d“-_ds)
.l RI’ '

j=1

1 1
= Dxt — > ' hs.mub(duds)
i-1 ’

=1 |ttt

[
()~

| "
_ > hs.wuiddu:ds)

[REALAY

-1

1
DX = > wilt).
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|
Second, from the definition of wit) it follows that > wi(t) =
i
1

I 1 1
EF O IMIEY = B TIF) = EXIX(MIF = SE* (TIF) = 3 %t
i i-1 [

S
| [

trom market clearing in the staric reinsurance ¢conomy /£ and the martingale

I Tl
property of x(t) under P*. Hence Exl{t) - Ewi(t) = w,(t). so the claim follows.
i= i=1

I'his shows that (h™", w,) is budget feasible for insurer L. Since (h*". w)) is optimal
tor 1, so is (h™, w,). From (5.2) and the above it follows that markets clear. so
that (3.28-29) hold. Thus the conclusion of the proposition tollows. []

Notice that we here have utilized the existence results in the static reinsurance
ceonomy IE to establish our result without the direct use of dynamic program-
ming. This is particularly fortunate in our model due to the complexity of the
Huamilton-Jacobi-Bellman equations in the present situation.

similar implementation techniques as demonstrated in the above proof have
carlier been developed within the context of financial economics (see Duffie and
Huang [1985] and Cox and Huang [1991]).

v Expected wtility

\~ in Section 2.5 we now consider the case where preferences are represented by
cxpected utility. Suppose each agent 1 wants to solve

N

max Uy (5.3

subject to wiy) = wix,) = E{V,x,(T}}, where U'ty,) = E{u,{y(TH} for some Ber-
noulli utility function u, with u (-} > 0 and v(-) << 0,0 & /.

Theorem 5.1: Ler Assumption 3.1 hold, suppose that U-) is additively separable
and regitlar (1), and that xfT) is strictly positive a.5. Then the insurance econ-

oy IR = (IE, FO HIX)) has a stochastic equilibrinm swith ¢ set of Pareto optinal
allocations yix it} i€ 1, re T, satisfving individual rationalitv. The premium

functional is given by miv) = [;{ V(.\'M(T)‘) v\-'(.rh{(T)) }.M'/’lé’!‘? V, only depends on
o F) through x,(T) = Z,e,xf(']'). Furtlwrrﬁore, the f;r(’mium at any timet € T of
the remaining risk in{t, T| equals w(y)(t) = (V(t))’E{ WT)()'(TJ — _\’(f—)) : F,}.
where Vi1) only depends an x(¢) through the term x (1) = zi&f.\'f(t).

Progf: The proof essentially follows from the theory of this section. Proposition
s.1. and from Theorem 2.1. Here we use Proposition 5.1 and the saddle point




122 KNUT K. AASE

theorem as follows: The results of this proposition hold under the conditions of
Theorem 5.1. so that there exists an equlibrium. Define for strictly posttive con-
stant k. k.. - - -, k,

Utxy) = sup 2k Uily(x)) (5.4)

yeeX e

such that market clearing X, yi{x) = Z, X, = Xy holds. Then we know from the
saddle point theorem that x,, is the solution to

max U(x)  subject to m(x) = mixy). (5.5

NOX

Problem {5.5) is equivalent to the problem

max E{0(y(T))}

yEX

subiect ta E{V¥(T)} = E{V x(T)}. (5.6)

where 0(y) = sup® kuly,} subject to Ty, = v. Since u, are strictly concave, in-

¥

creasing utility functions. so is u(+). Also, since %y solves (5.6). there must exist

. . . Ju
some Lagrangian multipler A > 0in (5.6) such that ;—\_(XM(T)) = AVr. by the Euler

. 3 '
equations. Thus V, = x» ! %(xN_I{T)) only depends on the vector x(T) through the
v

sum of its components. The same story can be told at time t < T, i.e.
V, = E{V{x;} | F,} only depends on x(t) via xu(0) = = x(t). []

6. The term structure of interest rates
6.1. Introduction

In this section we develop an equilibrium model for the interest rate on risk free
borrowing in our model. There is a well developed theory in financial economics
for how the interest rate may result endogenous to the model (see e.g., Cox, In-
gersoll and Ross [1985], Merton [1973a]). In the present case we need a careful
examination of how uncertainty is revealed as time goes in our model, and this
needs to be combined with the principles of economic equilibrium analysis and
the associated stochastic calculus presented in sections 2-5 of this paper. Let us
start by combining the premium formula (3.12) with Theorem 5.1. Then we get

1 ' '
- — \Y T.T / — - . i . .
wiy) V0 E{ (XM( ) )(y(T) ylt )) 1F‘} =y (6.1)
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By relaxing the assumption that x(t) =1 for all t € T, we still keep the above
lorm of the premium functional. but the martingale property under P of Vixy(t).t)
no Jonger automatically follows. neither is the expected value of Vixy(T).T) nec-
es~arily equal to unity any more,

n 2o Equilibrium interest rate

Suppose we define the equilibrium interest rate process. i.e.. the interest rate on
tiskless short-time borrowing as follows: It equals the stochastic process {Tit). t
< Tywhich is the return rate demanded by a security whose equilibrium price is
afways pnity. Recall our model for the net reserves in the market given in (4.4),
and consider the market quantities x{t). ay(t) = Z; alt) and zy{t) = =, z,(0).
Clearly the dynamic equation for the aggregated net reserves in the market xy(t)
cytls

Xylt) = x,(0) + J J‘( aylpviay.s) — NAZFAda)ds (6.2)
b T RD
! ~
- [ ”' Zyvldzds).
W R

by linearity of stochastic integrals. Even if the expression for the market marginal
utility in (3.23}4is no longer valid. the regularity properties of Vixy(t).t) as a func-
non of the arguments are inherited from the individual utility functions of the
msurers. so that we can use the generalized {td formula to obtain
av
Vixu(t)tr = Vixu(0h0 + II(XM(S).s}dS
0

1

vV
+ f “' —{Xydshslay (uvlay.s) — DAFY(da)ds
S ('fXM
0

{
- f JJ LYV .z n2Fidzyds
0 K
t

_ j J‘ l:V(XM(S-} — Zpe8) — V(XM(S-).S-):|f’(dZ:dS). (6.3)
|
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A few final remarks peculiar to the jump world can be given by considering
i{6.8—10): The right-hand side of (6.10) consists in reality of three terms. The first

av
I (Xu(t).[)

term can be interpreted as the time impatient rate — of the market.

Vixyl(t)ht)

[V(xM(t) — Zy D) — Vixylh)

7 |NFdz).
V() .Di-zy) 7~1] A(dz)

The second term can be written —JI
.
R_

which can be interpreted as minus the expected value of the random intertemporal
elasticity of substitution in aggregate claim sizes in the market at time t. These
two terms together correspond to what is known as the subjective discount
rate (of the representative agent, or the market as a whole) under full certainty.
Finally the third term can be written R (Xu(t),t)[ay(O(A* — N —
Ezy(0)}. where R, represents the intertemporal abseclute risk aversion coetficient
inserted the aggregate portfolio in the market. This term reduces to
R.{x{th.0[ — Ezy(t}] under risk neutrality. Thus. the equilibrium real interest rate
equals the analogous “subjective discount rate™ plus this latter term. Notice that
the presence of jumps has separated the relative risk aversion coefficient from the
elasticity of substitution. In models with no jumps, such a separation has usually
only been achieved by the introduction of non-separable preferences. For further
discussions of these points in a financial economics framework. also related to
the equity premium puzzle, see e.g.. Aase [1992b].

In the case where the jump sizes are so small that higher than second order
terms can be neglected. we obtain the limiting case that the riskfree rate equals
the time impatience rate in the case when F and A are non-random (do not depend
upon w).

6.3, Discownting

Consider the discounted marginal utility process in the market;

1
V. = exp{— [r\ds}»\/[. (6.11)
-H
Then by [t0's lemma

dv: = — rleXp{_Jr\dS} vt + exp *Jr\ds}d%
0

0
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= - exp{—J'rsds} ff ,:V(X;T(I-) - Iy, t‘)

- V(XM(I-). t-)}\?(dz:dt), (6.12)

where the last equality foliows from (6.10) and (6.3). Thus V| is a (P. F }-martin-
male. We are now back in the previous framework of sections 1-5. except from
the fact that we still do not know whether or not E(Vy) = | If it is. then (3.23) ts
ann the correct representation for V., the discounted spot price process of risk.
I'he premium of a risk v can now be written

.
my) = EIVITHT)} = E{exp{frbds} V*(T)y(T)}. (6.13)
[}

Similarly, the equilibrium market premium of the remaining risk in [t. T] equals

| , .
N Bl venl virt — vieo )
w(y) —V(l) { (I)(y(l) ylt )) F‘}

T

E{exp{J r.ds} V¥T)

0

exp {;r\ds} V*(1)

I+

(y(T) - y(t—}) IFI}. te T, (6.14)

[n the special case where the process {r{t). t € T}is deterministic. (6.14) simplifies

Ly

T .
mly) = exp {fr(s)ds}E*{(y(T) -y(t-}) | Ft}. te T, (6.15)

where E* is the expectation operator under P¥*. and where the associated density
process of this change of probability measure {V*it), t. € T} has a representation
as given in (3.23). This follows, since from the above definition of r. the expres-

T
sion E{V*(T)exp {fr(s)ds}} = 7w(l} = E{exp {Jr(s)ds}}. which tmplies that
(] 1] -

E{V*(T)} = | when ris deterministic,
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132 KNUT K. AASE

optimal sharing rules which are linear. in which case optimal risk sharing is of the
non-proportional type.

7.5. Other examples

Several similar computations can be carried out. for example to compute the pre-
mium of a stop loss contract on insurer 1's initially underwritten risk. Such illus-
trations are presented elsewhere (Aase [1992]). Similarly other preferences can be
studied, e.g. v(z,,) = explazy — In(ee*ty)}. where @ > 0 is some constant. This
corresponds to the Esscher model of actuarial science introduced by Bithlmann
[1980]. In our framework this model corresponds to preferences represented by
expected exponential utility. where the constant a may be derived from the indi-
vidual parameters. together with the budget constraints and F* (dz). Some com-
putations for this model are presented in Aase [[992].

In the above examples the market attitude towards frequency risk could be
introduced by letting the function w(t) = 0 differ from the constant 1. In the simple
case where the market is risk neutral with regard to claim sizes. the risk premium
of z, equals

1

mz) — E{z(T)} = U)\m(mn - l)dI)E{z:"}. (7.18)

0 .

It is seen from (7.18) that the risk premium is non-negative in the case where
w(t) = | for all t € T. This corresponds to the insurers setting their premiums in
the market according to a larger frequency of accidents (= p(1}r(t)} than they
expect to be the true frequency { = A(1)). P* has here the effect of risk adjusting
the joint frequency of claims in the market by a time dependent loading function
w{t) on frequency. ultimately determined by the market.

8. Summary

Given the many different lines of reinsurance. our results can be interpreted
roughly as follows: In some lines the uncertainty about frequency is crucial. but
claim sizes given that claims have occurred are not equally important. Within non-
life insurance auto insurance is an example. This is due to the dramatic effects
weather conditions can have on claim numbers, such as icy roads in the winter
time. wet summers etc.. whereas repair costs are much easier to predict. given
that the claim numbers are known.
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In principle is traditional life-insurance another example. disregarding unit-
linked products. Formally we do not cover life insurance/pension plans in the
model of this section. but the basic idea follows from the general theory of this
paper. Here the claim sizes are written into the contracts. so only uncertainty
iwgarding the time points of deaths remains. The insurers usually have reliable
mortality statistics, so that the probability distributions. and thus the “forces of
mortality” functions. are known. In principle risk neutrality ought to follow from
competition and the strong law of large numbers, since the number of similar
policies that each insurer holds is usually large. In reality the companies use some
kind of loading on the force of mortality. so that the term w. is larger than one for
same t and age groups, and the life insurers are risk averse in regard to mortality.
Similarly, for pension plans p is smaller than one. since overestimating the life
lengths of the pensioners now gives the right safety margins for risk averse insur-
[ AW

In other lines of reinsurance, like marine or oil, claim sizes are considered to
be the most important. This is because relatively few events happen. but given an
accident the damage cost may take on a whole range of values, including very
Luwge ones. so that reinsurance is here a necessity. The market concentrates its
altitude towards risk to claim size distributions in this kind of business, since
hasically only one accident can happen per contract, and free reinstatements are
naturally excluded from such contracts.

In vet other lines both sources of uncertainty may be judged to be important
e cause the reinsurers to behave with risk aversion jointly on both frequency
and conditional claim sizes. This is perhaps the most natural situation. and one
nhvious example is unit-linked life insurance (if stock market risk is modeled by
random measures instead of the usual diffusion processes),

In the paper we have shown that any general risky treaty can be spanned by
the random measure . Moreover, any such risk can be decomposed into a pro-
partional treaty and a general. non-proportional treaty orthogonal to this one.
Within this framework we have demonstrated the existence of a stochastic equi-
hbrium, and we have outlined how the unique proportional component of an op-
nimal strategy can be found by dynamic programming. The model for the term
«ructure of the interest rate in this jump type model demonstrates some interest-
g differences from the analogous continuous type models. In particular it does
not require as strong smoothness properties on preferences as dees the diffusion
bised analysis. Also the jumps turn out to separate the intertemporal elasticity of
~ubstitution from the coefficient of relative risk aversion, thus achieving much the
~ame as non-separable preferences does in continuous type models.

As our applications indicate, the different attitudes towards risk are quite nat-
urilly modeled within the present framework. We observe quite generally that in
reinsurance the market premium of a risk typically depends upon:

(1) The stochastic properties of the risk itself. here represented by the marginal
local characteristics (A(t}, F4(dz)).
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