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Abstract
Cybercrime is estimated to have cost the global economy just under USD  1 tril-
lion in 2020, indicating an increase of more than 50% since 2018. With the average 
cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, 
there is a growing necessity for better cyber information sources, standardised data-
bases, mandatory reporting and public awareness. This research analyses the extant 
academic and industry literature on cybersecurity and cyber risk management with 
a particular focus on data availability. From a preliminary search resulting in 5219 
cyber peer-reviewed studies, the application of the systematic methodology resulted 
in 79 unique datasets. We posit that the lack of available data on cyber risk poses a 
serious problem for stakeholders seeking to tackle this issue. In particular, we iden-
tify a lacuna in open databases that undermine collective endeavours to better man-
age this set of risks. The resulting data evaluation and categorisation will support 
cybersecurity researchers and the insurance industry in their efforts to comprehend, 
metricise and manage cyber risks.

Keywords  Cyber insurance · Cyber risk · Open data · Systematic review · 
Cybersecurity

Introduction

Globalisation, digitalisation and smart technologies have escalated the propensity 
and severity of cybercrime. Whilst it is an emerging field of research and indus-
try, the importance of robust cybersecurity defence systems has been highlighted 
at the corporate, national and supranational levels. The impacts of inadequate 
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cybersecurity are estimated to have cost the global economy USD 945 billion in 
2020 (Maleks Smith et  al. 2020). Cyber vulnerabilities pose significant corporate 
risks, including business interruption, breach of privacy and financial losses (Shee-
han et al. 2019). Despite the increasing relevance for the international economy, the 
availability of data on cyber risks remains limited. The reasons for this are many. 
Firstly, it is an emerging and evolving risk; therefore, historical data sources are lim-
ited (Biener et al. 2015). It could also be due to the fact that, in general, institutions 
that have been hacked do not publish the incidents (Eling and Schnell 2016). The 
lack of data poses challenges for many areas, such as research, risk management 
and cybersecurity (Falco et al. 2019). The importance of this topic is demonstrated 
by the announcement of the European Council in April 2021 that a centre of excel-
lence for cybersecurity will be established to pool investments in research, technol-
ogy and industrial development. The goal of this centre is to increase the security of 
the internet and other critical network and information systems (European Council 
2021).

This research takes a risk management perspective, focusing on cyber risk and 
considering the role of cybersecurity and cyber insurance in risk mitigation and risk 
transfer. The study reviews the existing literature and open data sources related to 
cybersecurity and cyber risk. This is the first systematic review of data availabil-
ity in the general context of cyber risk and cybersecurity. By identifying and criti-
cally analysing the available datasets, this paper supports the research community by 
aggregating, summarising and categorising all available open datasets. In addition, 
further information on datasets is attached to provide deeper insights and support 
stakeholders engaged in cyber risk control and cybersecurity. Finally, this research 
paper highlights the need for open access to cyber-specific data, without price or 
permission barriers.

The identified open data can support cyber insurers in their efforts on sustainable 
product development. To date, traditional risk assessment methods have been unten-
able for insurance companies due to the absence of historical claims data (Shee-
han et al. 2021). These high levels of uncertainty mean that cyber insurers are more 
inclined to overprice cyber risk cover (Kshetri 2018). Combining external data with 
insurance portfolio data therefore seems to be essential to improve the evaluation of 
the risk and thus lead to risk-adjusted pricing (Bessy-Roland et al. 2021). This argu-
ment is also supported by the fact that some re/insurers reported that they are work-
ing to improve their cyber pricing models (e.g. by creating or purchasing databases 
from external providers) (EIOPA 2018). Figure 1 provides an overview of pricing 
tools and factors considered in the estimation of cyber insurance based on the find-
ings of EIOPA (2018) and the research of Romanosky et al. (2019). The term cyber 
risk refers to all cyber risks and their potential impact.

Besides the advantage of risk-adjusted pricing, the availability of open datasets 
helps companies benchmark their internal cyber posture and cybersecurity meas-
ures. The research can also help to improve risk awareness and corporate behav-
iour. Many companies still underestimate their cyber risk (Leong and Chen 2020). 
For policymakers, this research offers starting points for a comprehensive recording 
of cyber risks. Although in many countries, companies are obliged to report data 
breaches to the respective supervisory authority, this information is usually not 



700	 F. Cremer et al.

accessible to the research community. Furthermore, the economic impact of these 
breaches is usually unclear.

As well as the cyber risk management community, this research also supports 
cybersecurity stakeholders. Researchers are provided with an up-to-date, peer-
reviewed literature of available datasets showing where these datasets have been 
used. For example, this includes datasets that have been used to evaluate the effec-
tiveness of countermeasures in simulated cyberattacks or to test intrusion detection 
systems. This reduces a time-consuming search for suitable datasets and ensures a 
comprehensive review of those available. Through the dataset descriptions, research-
ers and industry stakeholders can compare and select the most suitable datasets for 
their purposes. In addition, it is possible to combine the datasets from one source 
in the context of cybersecurity or cyber risk. This supports efficient and timely pro-
gress in cyber risk research and is beneficial given the dynamic nature of cyber risks.

Cyber risks are defined as “operational risks to information and technology assets 
that have consequences affecting the confidentiality, availability, and/or integrity 
of information or information systems” (Cebula et al. 2014). Prominent cyber risk 
events include data breaches and cyberattacks (Agrafiotis et al. 2018). The increas-
ing exposure and potential impact of cyber risk have been highlighted in recent 
industry reports (e.g. Allianz 2021; World Economic Forum 2020). Cyberattacks on 
critical infrastructures are ranked 5th in the World Economic Forum’s Global Risk 
Report. Ransomware, malware and distributed denial-of-service (DDoS) are exam-
ples of the evolving modes of a cyberattack. One example is the ransomware attack 
on the Colonial Pipeline, which shut down the 5500 mile pipeline system that deliv-
ers 2.5 million barrels of fuel per day and critical liquid fuel infrastructure from oil 
refineries to states along the U.S. East Coast (Brower and McCormick 2021). These 

Fig. 1   An overview of the current cyber insurance informational and methodological landscape, adapted 
from EIOPA (2018) and Romanosky et al. (2019)
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and other cyber incidents have led the U.S. to strengthen its cybersecurity and intro-
duce, among other things, a public body to analyse major cyber incidents and make 
recommendations to prevent a recurrence (Murphey 2021a). Another example of the 
scope of cyberattacks is the ransomware NotPetya in 2017. The damage amounted to 
USD 10 billion, as the ransomware exploited a vulnerability in the windows system, 
allowing it to spread independently worldwide in the network (GAO 2021). In the 
same year, the ransomware WannaCry was launched by cybercriminals. The cyber-
attack on Windows software took user data hostage in exchange for Bitcoin crypto-
currency (Smart 2018). The victims included the National Health Service in Great 
Britain. As a result, ambulances were redirected to other hospitals because of infor-
mation technology (IT) systems failing, leaving people in need of urgent assistance 
waiting. It has been estimated that 19,000 cancelled treatment appointments resulted 
from losses of GBP 92 million (Field 2018). Throughout the COVID-19 pandemic, 
ransomware attacks increased significantly, as working from home arrangements 
increased vulnerability (Murphey 2021b).

Besides cyberattacks, data breaches can also cause high costs. Under the General 
Data Protection Regulation (GDPR), companies are obliged to protect personal data 
and safeguard the data protection rights of all individuals in the EU area. The GDPR 
allows data protection authorities in each country to impose sanctions and fines on 
organisations they find in breach. “For data breaches, the maximum fine can be 
€20 million or 4% of global turnover, whichever is higher” (GDPR.EU 2021). Data 
breaches often involve a large amount of sensitive data that has been accessed, unau-
thorised, by external parties, and are therefore considered important for informa-
tion security due to their far-reaching impact (Goode et al. 2017). A data breach is 
defined as a “security incident in which sensitive, protected, or confidential data are 
copied, transmitted, viewed, stolen, or used by an unauthorized individual” (Freeha 
et al. 2021). Depending on the amount of data, the extent of the damage caused by a 
data breach can be significant, with the average cost being USD 392 million1 (IBM 
Security 2020).

This research paper reviews the existing literature and open data sources related 
to cybersecurity and cyber risk, focusing on the datasets used to improve academic 
understanding and advance the current state-of-the-art in cybersecurity. Further-
more, important information about the available datasets is presented (e.g. use 
cases), and a plea is made for open data and the standardisation of cyber risk data 
for academic comparability and replication. The remainder of the paper is structured 
as follows. The next section describes the related work regarding cybersecurity and 
cyber risks. The third section outlines the review method used in this work and the 
process. The fourth section details the results of the identified literature. Further dis-
cussion is presented in the penultimate section and the final section concludes.

1  Average cost of a breach of more than 50 million records.
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Related work

Due to the significance of cyber risks, several literature reviews have been conducted 
in this field. Eling (2020) reviewed the existing academic literature on the topic of 
cyber risk and cyber insurance from an economic perspective. A total of 217 papers 
with the term ‘cyber risk’ were identified and classified in different categories. As a 
result, open research questions are identified, showing that research on cyber risks is 
still in its infancy because of their dynamic and emerging nature. Furthermore, the 
author highlights that particular focus should be placed on the exchange of informa-
tion between public and private actors. An improved information flow could help 
to measure the risk more accurately and thus make cyber risks more insurable and 
help risk managers to determine the right level of cyber risk for their company. In 
the context of cyber insurance data, Romanosky et  al. (2019) analysed the under-
writing process for cyber insurance and revealed how cyber insurers understand and 
assess cyber risks. For this research, they examined 235 American cyber insurance 
policies that were publicly available and looked at three components (coverage, 
application questionnaires and pricing). The authors state in their findings that many 
of the insurers used very simple, flat-rate pricing (based on a single calculation of 
expected loss), while others used more parameters such as the asset value of the 
company (or company revenue) or standard insurance metrics (e.g. deductible, lim-
its), and the industry in the calculation. This is in keeping with Eling (2020), who 
states that an increased amount of data could help to make cyber risk more accu-
rately measured and thus more insurable. Similar research on cyber insurance and 
data was conducted by Nurse et al. (2020). The authors examined cyber insurance 
practitioners’ perceptions and the challenges they face in collecting and using data. 
In addition, gaps were identified during the research where further data is needed. 
The authors concluded that cyber insurance is still in its infancy, and there are still 
several unanswered questions (for example, cyber valuation, risk calculation and 
recovery). They also pointed out that a better understanding of data collection and 
use in cyber insurance would be invaluable for future research and practice. Bessy-
Roland et  al. (2021) come to a similar conclusion. They proposed a multivariate 
Hawkes framework to model and predict the frequency of cyberattacks. They used a 
public dataset with characteristics of data breaches affecting the U.S. industry. In the 
conclusion, the authors make the argument that an insurer has a better knowledge of 
cyber losses, but that it is based on a small dataset and therefore combination with 
external data sources seems essential to improve the assessment of cyber risks.

Several systematic reviews have been published in the area of cybersecurity 
(Kruse et al. 2017; Lee et al. 2020; Loukas et al. 2013; Ulven and Wangen 2021). 
In these papers, the authors concentrated on a specific area or sector in the con-
text of cybersecurity. This paper adds to this extant literature by focusing on data 
availability and its importance to risk management and insurance stakeholders. 
With a priority on healthcare and cybersecurity, Kruse et al. (2017) conducted a 
systematic literature review. The authors identified 472 articles with the keywords 
‘cybersecurity and healthcare’ or ‘ransomware’ in the databases Cumulative 
Index of Nursing and Allied Health Literature, PubMed and Proquest. Articles 
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were eligible for this review if they satisfied three criteria: (1) they were pub-
lished between 2006 and 2016, (2) the full-text version of the article was avail-
able, and (3) the publication is a peer-reviewed or scholarly journal. The authors 
found that technological development and federal policies (in the U.S.) are the 
main factors exposing the health sector to cyber risks. Loukas et al. (2013) con-
ducted a review with a focus on cyber risks and cybersecurity in emergency man-
agement. The authors provided an overview of cyber risks in communication, 
sensor, information management and vehicle technologies used in emergency 
management and showed areas for which there is still no solution in the litera-
ture. Similarly, Ulven and Wangen (2021) reviewed the literature on cybersecu-
rity risks in higher education institutions. For the literature review, the authors 
used the keywords ‘cyber’, ‘information threats’ or ‘vulnerability’ in connection 
with the terms ‘higher education, ‘university’ or ‘academia’. A similar literature 
review with a focus on Internet of Things (IoT) cybersecurity was conducted by 
Lee et al. (2020). The review revealed that qualitative approaches focus on high-
level frameworks, and quantitative approaches to cybersecurity risk management 
focus on risk assessment and quantification of cyberattacks and impacts. In addi-
tion, the findings presented a four-step IoT cyber risk management framework 
that identifies, quantifies and prioritises cyber risks.

Datasets are an essential part of cybersecurity research, underlined by the fol-
lowing works. Ilhan Firat et al. (2021) examined various cybersecurity datasets in 
detail. The study was motivated by the fact that with the proliferation of the inter-
net and smart technologies, the mode of cyberattacks is also evolving. However, in 
order to prevent such attacks, they must first be detected; the dissemination and fur-
ther development of cybersecurity datasets is therefore critical. In their work, the 
authors observed studies of datasets used in intrusion detection systems. Khraisat 
et  al. (2019) also identified a need for new datasets in the context of cybersecu-
rity. The researchers presented a taxonomy of current intrusion detection systems, 
a comprehensive review of notable recent work, and an overview of the datasets 
commonly used for assessment purposes. In their conclusion, the authors noted that 
new datasets are needed because most machine-learning techniques are trained and 
evaluated on the knowledge of old datasets. These datasets do not contain new and 
comprehensive information and are partly derived from datasets from 1999. The 
authors noted that the core of this issue is the availability of new public datasets as 
well as their quality. The availability of data, how it is used, created and shared was 
also investigated by Zheng et al. (2018). The researchers analysed 965 cybersecurity 
research papers published between 2012 and 2016. They created a taxonomy of the 
types of data that are created and shared and then analysed the data collected via 
datasets. The researchers concluded that while datasets are recognised as valuable 
for cybersecurity research, the proportion of publicly available datasets is limited.

The main contributions of this review and what differentiates it from previous 
studies can be summarised as follows. First, as far as we can tell, it is the first work 
to summarise all available datasets on cyber risk and cybersecurity in the context of 
a systematic review and present them to the scientific community and cyber insur-
ance and cybersecurity stakeholders. Second, we investigated, analysed, and made 
available the datasets to support efficient and timely progress in cyber risk research. 
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And third, we enable comparability of datasets so that the appropriate dataset can be 
selected depending on the research area.

Methodology

Process and eligibility criteria

The structure of this systematic review is inspired by the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) framework (Page et  al. 
2021), and the search was conducted from 3 to 10 May 2021. Due to the continu-
ous development of cyber risks and their countermeasures, only articles published 
in the last 10  years were considered. In addition, only articles published in peer-
reviewed journals written in English were included. As a final criterion, only articles 
that make use of one or more cybersecurity or cyber risk datasets met the inclu-
sion criteria. Specifically, these studies presented new or existing datasets, used 
them for methods, or used them to verify new results, as well as analysed them in an 
economic context and pointed out their effects. The criterion was fulfilled if it was 
clearly stated in the abstract that one or more datasets were used. A detailed expla-
nation of this selection criterion can be found in the ‘Study selection’ section.

Information sources

In order to cover a complete spectrum of literature, various databases were queried 
to collect relevant literature on the topic of cybersecurity and cyber risks. Due to the 
spread of related articles across multiple databases, the literature search was lim-
ited to the following four databases for simplicity: IEEE Xplore, Scopus, Springer-
Link and Web of Science. This is similar to other literature reviews addressing cyber 
risks or cybersecurity, including Sardi et al. (2021), Franke and Brynielsson (2014), 
Lagerström (2019), Eling and Schnell (2016) and Eling (2020). In this paper, all 
databases used in the aforementioned works were considered. However, only two 
studies also used all the databases listed. The IEEE Xplore database contains electri-
cal engineering, computer science, and electronics work from over 200 journals and 
three million conference papers (IEEE 2021). Scopus includes 23,400 peer-reviewed 
journals from more than 5000 international publishers in the areas of science, engi-
neering, medicine, social sciences and humanities (Scopus 2021). SpringerLink 
contains 3742 journals and indexes over 10 million scientific documents (Springer-
Link 2021). Finally, Web of Science indexes over 9200 journals in different scien-
tific disciplines (Science 2021).

Search

A search string was created and applied to all databases. To make the search effi-
cient and reproducible, the following search string with Boolean operator was used 
in all databases: cybersecurity OR cyber risk AND dataset OR database. To ensure 
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uniformity of the search across all databases, some adjustments had to be made for 
the respective search engines. In Scopus, for example, the Advanced Search was 
used, and the field code ‘Title-ABS-KEY’ was integrated into the search string. 
For IEEE Xplore, the search was carried out with the Search String in the Com-
mand Search and ‘All Metadata’. In the Web of Science database, the Advanced 
Search was used. The special feature of this search was that it had to be carried out 
in individual steps. The first search was carried out with the terms cybersecurity 
OR cyber risk with the field tag Topic (T.S. =) and the second search with data-
set OR database. Subsequently, these searches were combined, which then deliv-
ered the searched articles for review. For SpringerLink, the search string was used in 
the Advanced Search under the category ‘Find the resources with all of the words’. 
After conducting this search string, 5219 studies could be found. According to the 
eligibility criteria (period, language and only scientific journals), 1581 studies were 
identified in the databases:

•	 IEEE: 364
•	 Scopus: 135
•	 Springer Link: 548
•	 Web of Science: 534

An overview of the process is given in Fig. 2. Combined with the results from the 
four databases, 854 articles without duplicates were identified.

Study selection

In the final step of the selection process, the articles were screened for relevance. 
Due to a large number of results, the abstracts were analysed in the first step of the 
process. The aim was to determine whether the article was relevant for the system-
atic review. An article fulfilled the criterion if it was recognisable in the abstract 
that it had made a contribution to datasets or databases with regard to cyber risks 
or cybersecurity. Specifically, the criterion was considered to be met if the abstract 
used datasets that address the causes or impacts of cyber risks, and measures in the 
area of cybersecurity. In this process, the number of articles was reduced to 288. The 
articles were then read in their entirety, and an expert panel of six people decided 
whether they should be used. This led to a final number of 255 articles. The years in 
which the articles were published and the exact number can be seen in Fig. 3.

Data collection process and synthesis of the results

For the data collection process, various data were extracted from the studies, includ-
ing the names of the respective creators, the name of the dataset or database and the 
corresponding reference. It was also determined where the data came from. In the 
context of accessibility, it was determined whether access is free, controlled, avail-
able for purchase or not available. It was also determined when the datasets were 
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Fig. 2   Literature search process and categorisation of the studies
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created and the time period referenced. The application type and domain character-
istics of the datasets were identified.

Results

This section analyses the results of the systematic literature review. The previously 
identified studies are divided into three categories: datasets on the causes of cyber 
risks, datasets on the effects of cyber risks and datasets on cybersecurity. The clas-
sification is based on the intended use of the studies. This system of classification 
makes it easier for stakeholders to find the appropriate datasets. The categories are 
evaluated individually. Although complete information is available for a large pro-
portion of datasets, this is not true for all of them. Accordingly, the abbreviation 
N/A has been inserted in the respective characters to indicate that this information 
could not be determined by the time of submission. The term ‘use cases in the lit-
erature’ in the following and supplementary tables refers to the application areas in 
which the corresponding datasets were used in the literature. The areas listed there 
refer to the topic area on which the researchers conducted their research. Since some 
datasets were used interdisciplinarily, the listed use cases in the literature are cor-
respondingly longer. Before discussing each category in the next sections, Fig.  4 
provides an overview of the number of datasets found and their year of creation. 
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Figure  5 then shows the relationship between studies and datasets in the period 
under consideration. Figure 6 shows the distribution of studies, their use of datasets 
and their creation date. The number of datasets used is higher than the number of 
studies because the studies often used several datasets (Table 1).    

Most of the datasets are generated in the U.S. (up to 58.2%). Canada and Aus-
tralia rank next, with 11.3% and 5% of all the reviewed datasets, respectively.

Additionally, to create value for the datasets for the cyber insurance industry, an 
assessment of the applicability of each dataset has been provided for cyber insurers. 
This ‘Use Case Assessment’ includes the use of the data in the context of different 
analyses, calculation of cyber insurance premiums, and use of the information for 
the design of cyber insurance contracts or for additional customer services. To rea-
sonably account for the transition of direct hyperlinks in the future, references were 
directed to the main websites for longevity (nearest resource point). In addition, the 
links to the main pages contain further information on the datasets and different ver-
sions related to the operating systems. The references were chosen in such a way 
that practitioners get the best overview of the respective datasets.
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Case datasets

This section presents selected articles that use the datasets to analyse the causes of 
cyber risks. The datasets help identify emerging trends and allow pattern discov-
ery in cyber risks. This information gives cybersecurity experts and cyber insur-
ers the data to make better predictions and take appropriate action. For example, 
if certain vulnerabilities are not adequately protected, cyber insurers will demand a 
risk surcharge leading to an improvement in the risk-adjusted premium. Due to the 
capricious nature of cyber risks, existing data must be supplemented with new data 
sources (for example, new events, new methods or security vulnerabilities) to deter-
mine prevailing cyber exposure. The datasets of cyber risk causes could be com-
bined with existing portfolio data from cyber insurers and integrated into existing 
pricing tools and factors to improve the valuation of cyber risks.

A portion of these datasets consists of several taxonomies and classifications of 
cyber risks. Aassal et al. (2020) propose a new taxonomy of phishing characteris-
tics based on the interpretation and purpose of each characteristic. In comparison, 
Hindy et al. (2020) presented a taxonomy of network threats and the impact of cur-
rent datasets on intrusion detection systems. A similar taxonomy was suggested by 
Kiwia et  al. (2018). The authors presented a cyber kill chain-based taxonomy of 
banking Trojans features. The taxonomy built on a real-world dataset of 127 bank-
ing Trojans collected from December 2014 to January 2016 by a major U.K.-based 
financial organisation.

In the context of classification, Aamir et  al. (2021) showed the benefits of 
machine learning for classifying port scans and DDoS attacks in a mixture of 

Table 1   Percentage contribution 
of datasets for each place of 
origin

Rank Place of origin Percentage of 
datasets 

1 U.S. 58.2
2 Canada 11.3
3 Australia 5
4 Germany 3.7
5 U.K. 3.7
6 France 2.5
7 Italy 2.5
8 Spain 2.5
9 China 1.2
10 Czech Republic 1.2
11 Greece 1.2
12 Japan 1.2
13 Lithuania 1.2
14 Luxembourg 1.2
15 Netherlands 1.2
16 Republic of Korea 1.2
17 Turkey 1.2
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normal and attack traffic. Guo et al. (2020) presented a new method to improve mal-
ware classification based on entropy sequence features. The evaluation of this new 
method was conducted on different malware datasets.

To reconstruct attack scenarios and draw conclusions based on the evidence in 
the alert stream, Barzegar and Shajari (2018) use the DARPA2000 and MACCDC 
2012 dataset for their research. Giudici and Raffinetti (2020) proposed a rank-based 
statistical model aimed at predicting the severity levels of cyber risk. The model 
used cyber risk data from the University of Milan. In contrast to the previous data-
sets, Skrjanc et  al. (2018) used the older dataset KDD99 to monitor large-scale 
cyberattacks using a cauchy clustering method.

Amin et  al. (2021) used a cyberattack dataset from the Canadian Institute for 
Cybersecurity to identify spatial clusters of countries with high rates of cyberat-
tacks. In the context of cybercrime, Junger et al. (2020) examined crime scripts, key 
characteristics of the target company and the relationship between criminal effort 
and financial benefit. For their study, the authors analysed 300 cases of fraudulent 
activities against Dutch companies. With a similar focus on cybercrime, Mire-
les et  al. (2019) proposed a metric framework to measure the effectiveness of the 
dynamic evolution of cyberattacks and defensive measures. To validate its useful-
ness, they used the DEFCON dataset.

Due to the rapidly changing nature of cyber risks, it is often impossible to obtain 
all information on them. Kim and Kim (2019) proposed an automated dataset gen-
eration system called CTIMiner that collects threat data from publicly available 
security reports and malware repositories. They released a dataset to the public con-
taining about 640,000 records from 612 security reports published between January 
2008 and 2019. A similar approach is proposed by Kim et al. (2020), using a named 
entity recognition system to extract core information from cyber threat reports auto-
matically. They created a 498,000-tag dataset during their research (Ulven and Wan-
gen 2021).

Within the framework of vulnerabilities and cybersecurity issues, Ulven and 
Wangen (2021) proposed an overview of mission-critical assets and everyday threat 
events, suggested a generic threat model, and summarised common cybersecurity 
vulnerabilities. With a focus on hospitality, Chen and Fiscus (2018) proposed sev-
eral issues related to cybersecurity in this sector. They analysed 76 security inci-
dents from the Privacy Rights Clearinghouse database. Supplementary Table 1 lists 
all findings that belong to the cyber causes dataset.

Impact datasets

This section outlines selected findings of the cyber impact dataset. For cyber insur-
ers, these datasets can form an important basis for information, as they can be used 
to calculate cyber insurance premiums, evaluate specific cyber risks, formulate 
inclusions and exclusions in cyber wordings, and re-evaluate as well as supplement 
the data collected so far on cyber risks. For example, information on financial losses 
can help to better assess the loss potential of cyber risks. Furthermore, the data-
sets can provide insight into the frequency of occurrence of these cyber risks. The 
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new datasets can be used to close any data gaps that were previously based on very 
approximate estimates or to find new results.

Eight studies addressed the costs of data breaches. For instance, Eling and Jung 
(2018) reviewed 3327 data breach events from 2005 to 2016 and identified an asym-
metric dependence of monthly losses by breach type and industry. The authors used 
datasets from the Privacy Rights Clearinghouse for analysis. The Privacy Rights 
Clearinghouse datasets and the Breach level index database were also used by De 
Giovanni et al. (2020) to describe relationships between data breaches and bitcoin-
related variables using the cointegration methodology. The data were obtained from 
the Department of Health and Human Services of healthcare facilities reporting 
data breaches and a national database of technical and organisational infrastructure 
information. Also in the context of data breaches, Algarni et al. (2021) developed a 
comprehensive, formal model that estimates the two components of security risks: 
breach cost and the likelihood of a data breach within 12 months. For their survey, 
the authors used two industrial reports from the Ponemon institute and VERIZON. 
To illustrate the scope of data breaches, Neto et al. (2021) identified 430 major data 
breach incidents among more than 10,000 incidents. The database created is avail-
able and covers the period 2018 to 2019.

With a direct focus on insurance, Biener et  al. (2015) analysed 994 cyber loss 
cases from an operational risk database and investigated the insurability of cyber 
risks based on predefined criteria. For their study, they used data from the com-
pany SAS OpRisk Global Data. Similarly, Eling and Wirfs (2019) looked at a wide 
range of cyber risk events and actual cost data using the same database. They iden-
tified cyber losses and analysed them using methods from statistics and actuarial 
science. Using a similar reference, Farkas et al. (2021) proposed a method for ana-
lysing cyber claims based on regression trees to identify criteria for classifying and 
evaluating claims. Similar to Chen and Fiscus (2018), the dataset used was the Pri-
vacy Rights Clearinghouse database. Within the framework of reinsurance, Moro 
(2020) analysed cyber index-based information technology activity to see if index-
parametric reinsurance coverage could suggest its cedant using data from a Syman-
tec dataset.

Paté-Cornell et  al. (2018) presented a general probabilistic risk analysis frame-
work for cybersecurity in an organisation to be specified. The results are distribu-
tions of losses to cyberattacks, with and without considered countermeasures in sup-
port of risk management decisions based both on past data and anticipated incidents. 
The data used were from The Common Vulnerability and Exposures database and 
via confidential access to a database of cyberattacks on a large, U.S.-based organisa-
tion. A different conceptual framework for cyber risk classification and assessment 
was proposed by Sheehan et al. (2021). This framework showed the importance of 
proactive and reactive barriers in reducing companies’ exposure to cyber risk and 
quantifying the risk. Another approach to cyber risk assessment and mitigation 
was proposed by Mukhopadhyay et al. (2019). They estimated the probability of an 
attack using generalised linear models, predicted the security technology required to 
reduce the probability of cyberattacks, and used gamma and exponential distribu-
tions to best approximate the average loss data for each malicious attack. They also 
calculated the expected loss due to cyberattacks, calculated the net premium that 
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would need to be charged by a cyber insurer, and suggested cyber insurance as a 
strategy to minimise losses. They used the CSI-FBI survey (1997–2010) to conduct 
their research.

In order to highlight the lack of data on cyber risks, Eling (2020) conducted a 
literature review in the areas of cyber risk and cyber insurance. Available infor-
mation on the frequency, severity, and dependency structure of cyber risks was 
filtered out. In addition, open questions for future cyber risk research were set up. 
Another example of data collection on the impact of cyberattacks is provided by 
Sornette et al. (2013), who use a database of newspaper articles, press reports and 
other media to provide a predictive method to identify triggering events and poten-
tial accident scenarios and estimate their severity and frequency. A similar approach 
to data collection was used by Arcuri et al. (2020) to gather an original sample of 
global cyberattacks from newspaper reports sourced from the LexisNexis database. 
This collection is also used and applied to the fields of dynamic communication and 
cyber risk perception by Fang et al. (2021). To create a dataset of cyber incidents 
and disputes, Valeriano and Maness (2014) collected information on cyber interac-
tions between rival states.

To assess trends and the scale of economic cybercrime, Levi (2017) examined 
datasets from different countries and their impact on crime policy. Pooser et  al. 
(2018) investigated the trend in cyber risk identification from 2006 to 2015 and 
company characteristics related to cyber risk perception. The authors used a dataset 
of various reports from cyber insurers for their study. Walker-Roberts et al. (2020) 
investigated the spectrum of risk of a cybersecurity incident taking place in the 
cyber-physical-enabled world using the VERIS Community Database. The datasets 
of impacts identified are presented below. Due to overlap, some may also appear in 
the causes dataset (Supplementary Table 2).

Cybersecurity datasets

General intrusion detection

General intrusion detection systems account for the largest share of countermeas-
ure datasets. For companies or researchers focused on cybersecurity, the data-
sets can be used to test their own countermeasures or obtain information about 
potential vulnerabilities. For example, Al-Omari et al. (2021) proposed an intelli-
gent intrusion detection model for predicting and detecting attacks in cyberspace, 
which was applied to dataset UNSW-NB 15. A similar approach was taken by 
Choras and Kozik (2015), who used machine learning to detect cyberattacks on 
web applications. To evaluate their method, they used the HTTP dataset CSIC 
2010. For the identification of unknown attacks on web servers, Kamarudin et al. 
(2017) proposed an anomaly-based intrusion detection system using an ensem-
ble classification approach. Ganeshan and Rodrigues (2020) showed an intru-
sion detection system approach, which clusters the database into several groups 
and detects the presence of intrusion in the clusters. In comparison, AlKadi et al. 
(2019) used a localisation-based model to discover abnormal patterns in network 
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traffic. Hybrid models have been recommended by Bhattacharya et al. (2020) and 
Agrawal et al. (2019); the former is a machine-learning model based on princi-
pal component analysis for the classification of intrusion detection system data-
sets, while the latter is a hybrid ensemble intrusion detection system for anomaly 
detection using different datasets to detect patterns in network traffic that deviate 
from normal behaviour.

Agarwal et  al. (2021) used three different machine learning algorithms in their 
research to find the most suitable for efficiently identifying patterns of suspicious 
network activity. The UNSW-NB15 dataset was used for this purpose. Kasongo and 
Sun (2020), Feed-Forward Deep Neural Network (FFDNN), Keshk et al. (2021), the 
privacy-preserving anomaly detection framework, and others also use the UNSW-
NB 15 dataset as part of intrusion detection systems. The same dataset and others 
were used by Binbusayyis and Vaiyapuri (2019) to identify and compare key features 
for cyber intrusion detection. Atefinia and Ahmadi (2021) proposed a deep neural 
network model to reduce the false positive rate of an anomaly-based intrusion detec-
tion system. Fossaceca et  al. (2015) focused in their research on the development 
of a framework that combined the outputs of multiple learners in order to improve 
the efficacy of network intrusion, and Gauthama Raman et  al. (2020) presented a 
search algorithm based on Support Vector machine to improve the performance of 
the detection and false alarm rate to improve intrusion detection techniques. Ahmad 
and Alsemmeari (2020) targeted extreme learning machine techniques due to their 
good capabilities in classification problems and handling huge data. They used the 
NSL-KDD dataset as a benchmark.

With reference to prediction, Bakdash et al. (2018) used datasets from the U.S. 
Department of Defence to predict cyberattacks by malware. This dataset consists of 
weekly counts of cyber events over approximately seven years. Another prediction 
method was presented by Fan et al. (2018), which showed an improved integrated 
cybersecurity prediction method based on spatial-time analysis. Also, with reference 
to prediction, Ashtiani and Azgomi (2014) proposed a framework for the distributed 
simulation of cyberattacks based on high-level architecture. Kirubavathi and Anitha 
(2016) recommended an approach to detect botnets, irrespective of their structures, 
based on network traffic flow behaviour analysis and machine-learning techniques. 
Dwivedi et  al. (2021) introduced a multi-parallel adaptive technique to utilise an 
adaption mechanism in the group of swarms for network intrusion detection. AlEr-
oud and Karabatis (2018) presented an approach that used contextual information to 
automatically identify and query possible semantic links between different types of 
suspicious activities extracted from network flows.

Intrusion detection systems with a focus on IoT

In addition to general intrusion detection systems, a proportion of studies focused 
on IoT. Habib et al. (2020) presented an approach for converting traditional intru-
sion detection systems into smart intrusion detection systems for IoT networks. To 
enhance the process of diagnostic detection of possible vulnerabilities with an IoT 
system, Georgescu et al. (2019) introduced a method that uses a named entity recog-
nition-based solution. With regard to IoT in the smart home sector, Heartfield et al. 
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(2021) presented a detection system that is able to autonomously adjust the decision 
function of its underlying anomaly classification models to a smart home’s chang-
ing condition. Another intrusion detection system was suggested by Keserwani et al. 
(2021), which combined Grey Wolf Optimization and Particle Swam Optimization 
to identify various attacks for IoT networks. They used the KDD Cup 99, NSL-KDD 
and CICIDS-2017 to evaluate their model. Abu Al-Haija and Zein-Sabatto (2020) 
provide a comprehensive development of a new intelligent and autonomous deep-
learning-based detection and classification system for cyberattacks in IoT commu-
nication networks that leverage the power of convolutional neural networks, abbre-
viated as IoT-IDCS-CNN (IoT-based Intrusion Detection and Classification System 
using Convolutional Neural Network). To evaluate the development, the authors 
used the NSL-KDD dataset. Biswas and Roy (2021) recommended a model that 
identifies malicious botnet traffic using novel deep-learning approaches like artifi-
cial neural networks gutted recurrent units and long- or short-term memory models. 
They tested their model with the Bot-IoT dataset.

With a more forensic background, Koroniotis et al. (2020) submitted a network 
forensic framework, which described the digital investigation phases for identify-
ing and tracing attack behaviours in IoT networks. The suggested work was evalu-
ated with the Bot-IoT and UINSW-NB15 datasets. With a focus on big data and IoT, 
Chhabra et  al. (2020) presented a cyber forensic framework for big data analytics 
in an IoT environment using machine learning. Furthermore, the authors mentioned 
different publicly available datasets for machine-learning models.

A stronger focus on a mobile phones was exhibited by Alazab et al. (2020), which 
presented a classification model that combined permission requests and application 
programme interface calls. The model was tested with a malware dataset contain-
ing 27,891 Android apps. A similar approach was taken by Li et al. (2019a, b), who 
proposed a reliable classifier for Android malware detection based on factorisation 
machine architecture and extraction of Android app features from manifest files and 
source code.

Literature reviews

In addition to the different methods and models for intrusion detection systems, vari-
ous literature reviews on the methods and datasets were also found. Liu and Lang 
(2019) proposed a taxonomy of intrusion detection systems that uses data objects as 
the main dimension to classify and summarise machine learning and deep learning-
based intrusion detection literature. They also presented four different benchmark 
datasets for machine-learning detection systems. Ahmed et al. (2016) presented an 
in-depth analysis of four major categories of anomaly detection techniques, which 
include classification, statistical, information theory and clustering. Hajj et  al. 
(2021) gave a comprehensive overview of anomaly-based intrusion detection sys-
tems. Their article gives an overview of the requirements, methods, measurements 
and datasets that are used in an intrusion detection system.

Within the framework of machine learning, Chattopadhyay et  al. (2018) con-
ducted a comprehensive review and meta-analysis on the application of machine-
learning techniques in intrusion detection systems. They also compared different 
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machine learning techniques in different datasets and summarised the performance. 
Vidros et al. (2017) presented an overview of characteristics and methods in auto-
matic detection of online recruitment fraud. They also published an available dataset 
of 17,880 annotated job ads, retrieved from the use of a real-life system. An empiri-
cal study of different unsupervised learning algorithms used in the detection of 
unknown attacks was presented by Meira et al. (2020).

New datasets

Kilincer et al. (2021) reviewed different intrusion detection system datasets in detail. 
They had a closer look at the UNS-NB15, ISCX-2012, NSL-KDD and CIDDS-001 
datasets. Stojanovic et al. (2020) also provided a review on datasets and their crea-
tion for use in advanced persistent threat detection in the literature. Another review 
of datasets was provided by Sarker et al. (2020), who focused on cybersecurity data 
science as part of their research and provided an overview from a machine-learning 
perspective. Avila et al. (2021) conducted a systematic literature review on the use 
of security logs for data leak detection. They recommended a new classification of 
information leak, which uses the GDPR principles, identified the most widely pub-
licly available dataset for threat detection, described the attack types in the datasets 
and the algorithms used for data leak detection. Tuncer et  al. (2020) presented a 
bytecode-based detection method consisting of feature extraction using local neigh-
bourhood binary patterns. They chose a byte-based malware dataset to investigate 
the performance of the proposed local neighbourhood binary pattern-based detec-
tion method. With a different focus, Mauro et al. (2020) gave an experimental over-
view of neural-based techniques relevant to intrusion detection. They assessed the 
value of neural networks using the Bot-IoT and UNSW-DB15 datasets.

Another category of results in the context of countermeasure datasets is those 
that were presented as new. Moreno et al. (2018) developed a database of 300 secu-
rity-related accidents from European and American sources. The database contained 
cybersecurity-related events in the chemical and process industry. Damasevicius 
et  al. (2020) proposed a new dataset (LITNET-2020) for network intrusion detec-
tion. The dataset is a new annotated network benchmark dataset obtained from the 
real-world academic network. It presents real-world examples of normal and under-
attack network traffic. With a focus on IoT intrusion detection systems, Alsaedi et al. 
(2020) proposed a new benchmark IoT/IIot datasets for assessing intrusion detection 
system-enabled IoT systems. Also in the context of IoT, Vaccari et al. (2020) pro-
posed a dataset focusing on message queue telemetry transport protocols, which can 
be used to train machine-learning models. To evaluate the performance of machine-
learning classifiers, Mahfouz et al. (2020) created a dataset called Game Theory and 
Cybersecurity (GTCS). A dataset containing 22,000 malware and benign samples 
was constructed by Martin et al. (2019). The dataset can be used as a benchmark to 
test the algorithm for Android malware classification and clustering techniques. In 
addition, Laso et al. (2017) presented a dataset created to investigate how data and 
information quality estimates enable the detection of anomalies and malicious acts 
in cyber-physical systems. The dataset contained various cyberattacks and is pub-
licly available.
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Other

In addition to the results described above, several other studies were found that 
fit into the category of countermeasures. Johnson et  al. (2016) examined the time 
between vulnerability disclosures. Using another vulnerabilities database, Common 
Vulnerabilities and Exposures (CVE), Subroto and Apriyana (2019) presented an 
algorithm model that uses big data analysis of social media and statistical machine 
learning to predict cyber risks. A similar databank but with a different focus, Com-
mon Vulnerability Scoring System, was used by Chatterjee and Thekdi (2020) to 
present an iterative data-driven learning approach to vulnerability assessment and 
management for complex systems. Using the CICIDS2017 dataset to evaluate the 
performance, Malik et  al. (2020) proposed a control plane-based orchestration for 
varied, sophisticated threats and attacks. The same dataset was used in another study 
by Lee et al. (2019), who developed an artificial security information event manage-
ment system based on a combination of event profiling for data processing and dif-
ferent artificial network methods. To exploit the interdependence between multiple 
series, Fang et al. (2021) proposed a statistical framework. In order to validate the 
framework, the authors applied it to a dataset of enterprise-level security breaches 
from the Privacy Rights Clearinghouse and Identity Theft Center database. Another 
framework with a defensive aspect was recommended by Li et al. (2021) to increase 
the robustness of deep neural networks against adversarial malware evasion attacks. 
Sarabi et  al. (2016) investigated whether and to what extent business details can 
help assess an organisation’s risk of data breaches and the distribution of risk across 
different types of incidents to create policies for protection, detection and recovery 
from different forms of security incidents. They used data from the VERIS Com-
munity Database.

Datasets that have been classified into the cybersecurity category are detailed in 
Supplementary Table 3. Due to overlap, records from the previous tables may also 
be included.

Discussion

This paper presented a systematic literature review of studies on cyber risk and 
cybersecurity that used datasets. Within this framework, 255 studies were fully 
reviewed and then classified into three different categories. Then, 79 datasets were 
consolidated from these studies. These datasets were subsequently analysed, and 
important information was selected through a process of filtering out. This informa-
tion was recorded in a table and enhanced with further information as part of the 
literature analysis. This made it possible to create a comprehensive overview of the 
datasets. For example, each dataset contains a description of where the data came 
from and how the data has been used to date. This allows different datasets to be 
compared and the appropriate dataset for the use case to be selected. This research 
certainly has limitations, so our selection of datasets cannot necessarily be taken as 
a representation of all available datasets related to cyber risks and cybersecurity. For 
example, literature searches were conducted in four academic databases and only 
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found datasets that were used in the literature. Many research projects also used old 
datasets that may no longer consider current developments. In addition, the data are 
often focused on only one observation and are limited in scope. For example, the 
datasets can only be applied to specific contexts and are also subject to further limi-
tations (e.g. region, industry, operating system). In the context of the applicability of 
the datasets, it is unfortunately not possible to make a clear statement on the extent 
to which they can be integrated into academic or practical areas of application or 
how great this effort is. Finally, it remains to be pointed out that this is an overview 
of currently available datasets, which are subject to constant change.

Due to the lack of datasets on cyber risks in the academic literature, additional 
datasets on cyber risks were integrated as part of a further search. The search was 
conducted on the Google Dataset search portal. The search term used was ‘cyber 
risk datasets’. Over 100 results were found. However, due to the low significance 
and verifiability, only 20 selected datasets were included. These can be found 
in Table 2 in the “Appendix”.

The results of the literature review and datasets also showed that there continues 
to be a lack of available, open cyber datasets. This lack of data is reflected in cyber 
insurance, for example, as it is difficult to find a risk-based premium without a suf-
ficient database (Nurse et  al. 2020). The global cyber insurance market was esti-
mated at USD 5.5 billion in 2020 (Dyson 2020). When compared to the USD 1 tril-
lion global losses from cybercrime (Maleks Smith et al. 2020), it is clear that there 
exists a significant cyber risk awareness challenge for both the insurance industry 
and international commerce. Without comprehensive and qualitative data on cyber 
losses, it can be difficult to estimate potential losses from cyberattacks and price 
cyber insurance accordingly (GAO 2021). For instance, the average cyber insur-
ance loss increased from USD 145,000 in 2019 to USD 359,000 in 2020 (FitchRat-
ings 2021). Cyber insurance is an important risk management tool to mitigate the 
financial impact of cybercrime. This is particularly evident in the impact of different 
industries. In the Energy & Commodities financial markets, a ransomware attack on 
the Colonial Pipeline led to a substantial impact on the U.S. economy. As a result of 
the attack, about 45% of the U.S. East Coast was temporarily unable to obtain sup-
plies of diesel, petrol and jet fuel. This caused the average price in the U.S. to rise 7 
cents to USD 3.04 per gallon, the highest in seven years (Garber 2021). In addition, 
Colonial Pipeline confirmed that it paid a USD 4.4 million ransom to a hacker gang 
after the attack. Another ransomware attack occurred in the healthcare and govern-
ment sector. The victim of this attack was the Irish Health Service Executive (HSE). 
A ransom payment of USD 20 million was demanded from the Irish government to 
restore services after the hack (Tidy 2021). In the car manufacturing sector, Miller 
and Valasek (2015) initiated a cyberattack that resulted in the recall of 1.4 million 
vehicles and cost manufacturers EUR 761 million. The risk that arises in the context 
of these events is the potential for the accumulation of cyber losses, which is why 
cyber insurers are not expanding their capacity. An example of this accumulation 
of cyber risks is the NotPetya malware attack, which originated in Russia, struck 
in Ukraine, and rapidly spread around the world, causing at least USD 10 billion in 
damage (GAO 2021). These events highlight the importance of proper cyber risk 
management.
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This research provides cyber insurance stakeholders with an overview of cyber 
datasets. Cyber insurers can use the open datasets to improve their understanding 
and assessment of cyber risks. For example, the impact datasets can be used to bet-
ter measure financial impacts and their frequencies. These data could be combined 
with existing portfolio data from cyber insurers and integrated with existing pricing 
tools and factors to better assess cyber risk valuation. Although most cyber insurers 
have sparse historical cyber policy and claims data, they remain too small at present 
for accurate prediction (Bessy-Roland et al. 2021). A combination of portfolio data 
and external datasets would support risk-adjusted pricing for cyber insurance, which 
would also benefit policyholders. In addition, cyber insurance stakeholders can use 
the datasets to identify patterns and make better predictions, which would benefit 
sustainable cyber insurance coverage. In terms of cyber risk cause datasets, cyber 
insurers can use the data to review their insurance products. For example, the data 
could provide information on which cyber risks have not been sufficiently consid-
ered in product design or where improvements are needed. A combination of cyber 
cause and cybersecurity datasets can help establish uniform definitions to provide 
greater transparency and clarity. Consistent terminology could lead to a more sus-
tainable cyber market, where cyber insurers make informed decisions about the level 
of coverage and policyholders understand their coverage (The Geneva Association 
2020).

In addition to the cyber insurance community, this research also supports cyber-
security stakeholders. The reviewed literature can be used to provide a contempo-
rary, contextual and categorised summary of available datasets. This supports effi-
cient and timely progress in cyber risk research and is beneficial given the dynamic 
nature of cyber risks. With the help of the described cybersecurity datasets and the 
identified information, a comparison of different datasets is possible. The datasets 
can be used to evaluate the effectiveness of countermeasures in simulated cyberat-
tacks or to test intrusion detection systems.

Conclusion

In this paper, we conducted a systematic review of studies on cyber risk and cyber-
security databases. We found that most of the datasets are in the field of intrusion 
detection and machine learning and are used for technical cybersecurity aspects. 
The available datasets on cyber risks were relatively less represented. Due to the 
dynamic nature and lack of historical data, assessing and understanding cyber risk 
is a major challenge for cyber insurance stakeholders. To address this challenge, a 
greater density of cyber data is needed to support cyber insurers in risk management 
and researchers with cyber risk-related topics. With reference to ‘Open Science’ 
FAIR data (Jacobsen et al. 2020), mandatory reporting of cyber incidents could help 
improve cyber understanding, awareness and loss prevention among companies and 
insurers. Through greater availability of data, cyber risks can be better understood, 
enabling researchers to conduct more in-depth research into these risks. Companies 
could incorporate this new knowledge into their corporate culture to reduce cyber 
risks. For insurance companies, this would have the advantage that all insurers 
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would have the same understanding of cyber risks, which would support sustainable 
risk-based pricing. In addition, common definitions of cyber risks could be derived 
from new data.

The cybersecurity databases summarised and categorised in this research could 
provide a different perspective on cyber risks that would enable the formulation of 
common definitions in cyber policies. The datasets can help companies addressing 
cybersecurity and cyber risk as part of risk management assess their internal cyber 
posture and cybersecurity measures. The paper can also help improve risk awareness 
and corporate behaviour, and provides the research community with a comprehen-
sive overview of peer-reviewed datasets and other available datasets in the area of 
cyber risk and cybersecurity. This approach is intended to support the free availabil-
ity of data for research. The complete tabulated review of the literature is included in 
the Supplementary Material.

This work provides directions for several paths of future work. First, there are 
currently few publicly available datasets for cyber risk and cybersecurity. The older 
datasets that are still widely used no longer reflect today’s technical environment. 
Moreover, they can often only be used in one context, and the scope of the samples 
is very limited. It would be of great value if more datasets were publicly available 
that reflect current environmental conditions. This could help intrusion detection 
systems to consider current events and thus lead to a higher success rate. It could 
also compensate for the disadvantages of older datasets by collecting larger quanti-
ties of samples and making this contextualisation more widespread. Another area of 
research may be the integratability and adaptability of cybersecurity and cyber risk 
datasets. For example, it is often unclear to what extent datasets can be integrated 
or adapted to existing data. For cyber risks and cybersecurity, it would be helpful to 
know what requirements need to be met or what is needed to use the datasets appro-
priately. In addition, it would certainly be helpful to know whether datasets can be 
modified to be used for cyber risks or cybersecurity. Finally, the ability for stake-
holders to identify machine-readable cybersecurity datasets would be useful because 
it would allow for even clearer delineations or comparisons between datasets. Due to 
the lack of publicly available datasets, concrete benchmarks often cannot be applied.

Appendix
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