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Abstract

This paper analyzes the scope of the private market for
pandemic insurance. We develop a framework that
explains theoretically how the equilibrium price of pan-
demic insurance depends on accumulation risk, covar-
iance between pandemic claims and other claims, and
covariance between pandemic claims and the stock mar-
ket performance. Using the natural catastrophe (NatCat)
insurance market as a laboratory, we estimate the re-
lationship between the insurance price markup and the
tail characteristics of the loss distribution. Then, by using
the high-frequency data tracking the economic impact of
the COVID-19 pandemic in the United States, we cali-
brate the loss distribution of a hypothetical insurance
contract designed to alleviate the impact of the pandemic
on small businesses. The pandemic insurance contract
price markup corresponds to the top 20% markup ob-
served in the NatCat insurance market. Then we analyze
an intertemporal risk-sharing scheme that can reduce the
expected shortfall of the loss distribution by 50%.
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1 | INTRODUCTION

The economic losses due to the COVID-19 pandemic are estimated at 3.5% contraction of the
global gross domestic product (GDP) in 2020 (International Monetary Fund, 2021). Business
disruptions have been severe in many sectors of the economy. However, the impact has been
particularly devastating for small- and medium-size enterprises in sectors with in-person in-
teractions, such as tourism, transportation, food, recreation, and others. Furthermore, the
natural science consensus about the increasing frequency of emerging infectious diseases
(Jones et al., 2008; Smith et al., 2014; World Economic Forum, 2019) indicates a growing risk of
global pandemics. How can the insurance industry contribute to building resilience to future
pandemic events? Is pandemic risk insurable? What is the appropriate allocation of functions
between the insurance industry, the financial market, and the government in pandemic risk
transfer?

We develop an initial analysis to address these questions by evaluating the price markup,
that is, the premium in excess of the expected loss, at which a private insurance market is
willing to provide pandemic insurance, theoretically and empirically. We compare the price of
a pandemic insurance contract to the equilibrium prices observed in markets for natural cat-
astrophe (NatCat) risks in the United States. Furthermore, we assess the extent to which the
pandemic insurance price markup can be reduced by an intertemporal risk-sharing mechanism
to remedy the lack of cross-sectional diversification in case of a pandemic. Such a mechanism
can be implemented by a long-term intermediary, such as a government. We also discuss some
of the challenges and limitations of implementing this mechanism.

The analysis is conducted in the context of a hypothetical insurance contract which is
designed to alleviate the economic impact of the pandemic on the revenues and employment of
small- and medium-size businesses. The contract provides a monthly compensation during the
pandemic, for either the lost revenues of the business or for the lost employment income of its
workers. Our choice of a hypothetical contract is motivated by the analyses of Chetty et al.
(2020a), as well as Alexander and Karger (2020), that document a sharp reduction in spending
within geographic areas with a high COVID-19 infection rate and in sectors with in-person
interaction and mobility during the first quarter of 2020. Consequently, these businesses ex-
perienced a drastic decrease in their revenues and laid off many workers who are primarily
low-wage workers. This channel accounts for the most sizable economic impact of COVID-19
in 2020. Between Q1 2020 and Q2 2020, the US GDP fell by $1.73 trillion. The reduction in
consumer spending accounted for $1.35 trillion (an annualized rate of 25%) of the overall GDP
reduction.

Pandemic risk is distinct because of a large accumulation risk, under which many contracts
are triggered within a short period of time (Hartwig et al., 2020; Richter & Wilson, 2020). We
start by providing a theoretical framework that applies the three-moment capital-asset pricing
model (CAPM) developed by Kraus and Litzenberger (1976) to characterize the equilibrium of
the pandemic insurance market. Including the third central moment of the claim distribution
into the analysis allows us to map adequately low-frequency/high-severity situations and for-
malizes the notion of accumulation risks.

In this setting, we show that the pandemic insurance supply price not only depends on the
covariance between a pandemic risk and the traditional CAPM-market portfolio, but also on
the covariance between a pandemic risk and all other insured pandemic risks. The resulting
risk charge in the insurance premium reflects the cumulative-risk character of pandemic risks
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that affect many policyholders simultaneously. In addition, the coskewness of pandemic risks
with capital markets and insurance risks influences the price for pandemic insurance.

Using the same expected-utility framework that underlies the three-moments CAPM, we
derive the maximal willingness to pay for a potential policyholder. We elaborate on the con-
ditions under which a market for pandemic risk is possible, that is, we derive the conditions
under which a minimum price of the risk transfer acceptable to an insurer is lower than the
maximum willingness to pay for the risk transfer acceptable to a policyholder.

The theoretical framework formalizes that the equilibrium price of insurance depends on the tail
behavior characteristics of the loss distribution, the covariance between the pandemic insurance
losses and losses of other business lines, and the covariance between the pandemic insurance losses
and the stock market returns. We also discuss possible extensions of the model that could lead to an
adjustment of the equilibrium markup, that is, extensions regarding insurers’ default risk and
frictional costs, especially through taxes, bankruptcy risk, and agency problems.

Building on the theoretical framework, we develop an empirical assessment of the equili-
brium price markup as a function of the fatness of the tail of the loss distribution and
the covariance of insurers' stock returns with the market portfolio using the catastrophe in-
surance market in the United States as a laboratory. Then we apply the estimated model to
evaluate the price of a hypothetical insurance contract.

For practical reasons the empirical pricing model deviates from the theoretical model. Large
data samples, which are currently not available, would be needed to provide a stable estimation
particularly for the coskewness parameters. Yet, the proposed theoretical pricing model can
serve as a benchmark that shows which parts of the potential markup of a competitive in-
surance premium can already be estimated, and in which direction the empirical markup
calculation can be extended in the future, given improved data availability.

Our empirical assessment of the pandemic insurance price markup is conducted in three
steps. First, we estimate the relationship between the equilibrium insurance price and the tail
characteristics of the loss distribution, relying on extensive data on the NatCat losses, cata-
strophe insurance premiums, and paid losses in the United States. Second, we calibrate the loss
distribution of a hypothetical pandemic insurance contract using the high-frequency granular
data on business revenues, business closures, employment, and consumer spending in the
United States in 2020. These new and unique data are collected by the Opportunities Insights
Team (OIT) and are presented by Chetty et al. (2020b). We link the economic indicators data to
the weekly infection rates at the county level obtained from the Center for Disease Control
(CDC). By estimating the relationship between the economic indicators and the infection rates,
we calibrate the loss distribution of the pandemic insurance contract and its tail characteristics.
Third, in the last step, we apply the insurance pricing model for natural catastrophes to
evaluate the price markup of a hypothetical pandemic insurance contract and compare it to the
actual equilibrium prices of NatCat insurance in the United States.

Clearly, using a pricing model calibrated to the NatCat market has its shortcomings. In
particular, the NatCat market does not exhibit the significant accumulation risk of the pan-
demic event. However, our study offers an initial estimate of the magnitude of the losses of the
hypothetical pandemic insurance contract and also provides a starting point for further re-
search on the pricing of such a contract.

Next, we summarize the main parts and findings of the empirical analysis. To estimate the
relationship between the markup and the expected shortfall of the loss distribution, we con-
sider a comprehensive sample of the US property-casualty insurers and analyze all business
lines with exposure to natural disasters, including auto physical damage, commercial multiple
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peril, homeowners and farmowners, and special property. The price markup is calculated as
the ratio between the direct premiums written (DPW) and the discounted paid losses and other
expenses (Cummins & Danzon, 1997; Sommer, 1996). We estimate the natural disasters
loss distribution using the highly granular SHELDUS data that report the economic losses
and casualties at the county level in the United States.” In addition, we obtain the insurers'
annual betas by estimating a standard two-factor CAPM for publicly traded insurers
(Hartley et al., 2016).

We find that the price markup of NatCat insurance is higher for loss distributions with
higher expected shortfall, that is, distributions with higher tail risk, as predicted by the theory.
A 10% increase in the expected shortfall translates to a 1.5% increase in the markup. However,
the price markup of NatCat insurance is not significantly driven by the covariance between
insurers’ returns and stock market returns. The latter result reflects the limited impact of the
insured NatCat losses for the US economy, even in years with major events like hurricane
Katrina in 2005 (Mahalingham et al., 2018).

To assess the loss distribution of the hypothetical pandemic insurance contract, we exploit
the OIT data and estimate the relationship between infection rates and changes in small-
businesses revenues and employment. We find a strong positive relationship between the
reported COVID-19 infection rates and the key indicators of the economic impact, including
business revenue reductions, new unemployment claims, and reductions in consumer spend-
ing. By using the variation of infection rates across counties in the United States, we calibrate
the insurance industry aggregate loss distribution had unemployment lost income been in-
sured. This estimation provides an assessment of the severity of pandemic losses to small
businesses and their employees. Thereby, we consider 1-in-100 years frequency as a baseline
and extend the analysis to a range of alternative frequencies.

Applying the estimated catastrophe insurance pricing model to the calibrated loss dis-
tribution of the hypothetical insurance contract allows us to estimate the price markup for
pandemic insurance. Our main result is that the markup of the pandemic insurance contract is
substantially higher compared with the markup that insurers charge for insurance with ex-
posure to natural catastrophes. The estimated markup corresponds to the top 20% of the
markups charged for catastrophe insurance. The main reason for the elevated price markup is
high accumulation risk, that is, high correlation among claims and clustering of claims at
the first phase of the occurrence of the pandemic. As a consequence, the pandemic insurance
contract losses exhibit a large expected shortfall, which translates into a high insurance price
markup.

The empirical analysis suggests that, although there is a scope for the private insurance
market for business interruption losses generated by the pandemic, the high accumulation risk
of the pandemic insurance contract losses limits the scope for cross-sectional diversification by
the insurance industry. As a result, the amount of insurance provided by the private insurance
market is limited, and not sufficient to cover the losses comparable to those experienced during
the COVID-19 crisis. This causes questions about the scope of the intertemporal risk-transfer

These four categories include the following lines of business with exposure to catastrophe losses: Commercial Auto
Physical Damage, Multiple Peril (NonLiability), Earthquake, Farmowners, Federal Flood, Fire, Homeowners, Inland
Marine, Multiple Peril Crop, Private Passenger Auto Physical Damage, Private Crop, and Private Flood.

2SHELDUS is a county-level hazard data set for the United States and covers natural hazards, such as thunderstorms,
hurricanes, floods, wildfires, and tornados as well as perils, such as flash floods, heavy rainfall, and so forth. The
database contains crop and damage losses from 1960 to the present.



GRUNDL ET AL. . 867
Journal of Risk and Insuranc

mechanism facilitated by a long-term intermediary, such as the government, and potentially
involving the financial market.

In Section 5 of the paper, we assess the risk-sharing capacity of the intertemporal risk-
sharing mechanism that diversifies the pandemic insurance losses across 50 years. Using the
calibrated loss distribution of the hypothetical insurance contract, we derive the loss dis-
tribution of the risk-sharing scheme. We show that the mechanism enables the reduction of the
expected shortfall of the pandemic insurance loss distribution by 50%. However, the expected
shortfall remains substantially larger than that observed in the catastrophe insurance market.
We also discuss the practical challenges of implementing the intertemporal risk-sharing me-
chanism that mandates the purchase of reinsurance for all participating insurers, including the
entry and exit of insurers from the pandemic insurance market, and the challenges of designing
risk-based pricing of reinsurance provided by the scheme.

The paper is organized as follows. Section 2 discusses the factors that limit the insurability
of pandemic risks and the application of the three-moment CAPM to explain the pricing of
insurance. Section 3 describes the hypothetical insurance contract we use to calibrate the price
markup of the pandemic risk. Section 4 contains the empirical analysis to derive the price
markup of pandemic insurance. Section 5 evaluates the scope for intertemporal risk-sharing
and discusses the challenges of implementation. Section 6 concludes.

2 | FACTORS DRIVING THE INSURABILITY OF
PANDEMIC RISKS

2.1 | Overview

The issue of insurability has always been at the core of the insurance literature. A specific risk
is defined as insurable by Berliner (1985) and Karten (1997) if the agent exposed to the risk can
find a risk carrier who grants the requested cover. Moreover, Berliner (1985) presents a list of
criteria of insurability, which has since often been the basis for analyzing insurability, for
instance, by Biener and Eling (2012). On the basis of an insurer's strategic objectives, Berliner
and Bithlmann (1986) and Nierhaus (1986) set up a framework to analyze the risks for which a
(re)insurer would offer coverage. Schmit (1986) clarifies that a decisive requirement of insur-
ability is the predictability of the insurer's loss portfolio. McNichol et al. (2000) argue that the
insurability of a particular risk relies on the ability to identify and quantify the risk and the
ability to set premiums for each class of customers.

The COVID-19 pandemic has revived the discussion about the insurability of pandemic risk.
Though the insurance industry has indemnified the losses that were explicitly insured, for ex-
ample, trade credit or event cancellation insurance, the COVID-19 crisis has also revealed gaps in
insurance coverage that have resulted in claim disputes in business interruption insurance. The
key challenges of extending pandemic risk coverage in the future lie in the large loss accumulation
risk of pandemic insurance (Hartwig et al., 2020; Klein & Weston, 2020; Richter & Wilson, 2020).
Hartwig et al. (2020) and Qiu (2020) also point out that the covariance of pandemic losses with the
stock market and with losses in other business lines can further limit insurance capacity.

To cover the insurance protection gap for pandemic risk, particularly for business inter-
ruption insurance, Richter and Wilson (2020) suggest that the risk be assumed by the gov-
ernment while the insurance industry provides an administrative support in claims handling.
However, Klein and Weston (2020) elaborate on the reasons for the high shadow cost of such a
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program, particularly due to operational costs, as the implicit promise to bailout private
businesses and political interference. Hartwig et al. (2020) and The Geneva Association (2021)
analyze the approaches to government involvement to pandemic risk sharing, ranging from
postevent financing (like during the COVID-19 crisis), reinsurance, primary insurance, and
social insurance funded by taxpayers. They explain the factors driving the operational costs,
risk mitigation incentives, funding capacity, and the macroeconomic impact of these programs.

Pandemic risks are low-frequency/high-severity risks. The literature on catastrophe in-
surance supply (Cummins et al., 2002; Froot, 1999, 2001; Froot & Posner, 2000; Jaffee & Russell,
1997; Niehaus, 2002) provides important insights into the insurability of low-frequency/high-
severity risks: Catastrophe risk insurance involves intense risk-sharing within the insurance
industry by means of reinsurance and retrocession. Yet, the capacity of the industry is limited
by the aggregate size of equity capital. Thus, catastrophe risks can also require risk transfer
outside the insurance industry directly to the financial market through securitization
(Charpentier, 2008; Cummins & Trainar, 2009; Doherty, 1997).

Due to market imperfections, the private insurance industry set limitations on sharing
catastrophe risks, leading to a lack of insurability and implying high insurance premiums and
limited equity capital capacity (Winter, 1994). The literature also addresses market imperfec-
tions arising from agency problems and capital market frictions (Froot, 2007, 2008; Froot &
O’'Connell, 2008; Jaffee & Russell, 1997; Zanjani, 2002) as well as ambiguity in assessing cat-
astrophe risks (Charpentier, 2008; Gollier, 1997; Kunreuther & Michel-Kerjan, 2011). As a
consequence, the government could play a role as a long-term agent that provides the required
loss absorption capacity (Jarzabkowski et al., 2018). However, the analysis of a number of
government programs for catastrophe risk financing by Cummins (2006) and Jaffee and Russell
(1997) reveals the political pressure, operational inefficiencies, undercapitalization, and market
distortions associated with these programs.

Low-frequency/high-severity risks also have implications for insurance demand. Lower
take-up rates arise due to the higher elasticity of demand on price, income, and wealth. Grace
et al. (2004) document that demand for NatCat insurance is more price elastic than that for
non-NatCat insurance demand. Low take-up rates can be driven by budget constraints and
charity hazards (Browne & Hoyt, 2000; Grislain-Letrémy, 2018) in which case the latter is a
form of moral hazard not to buy insurance in the expectation of a state-provided financial
disaster assistance. Other factors that reduce demand for insurance of low-frequency/high-
severity events are bounded rationality to assess the impact of these events and distorted
incentives for risk mitigation (Kunreuther et al., 2013, 2019).

In addition to NatCat risks, cyber risks and terrorism risks are further examples of low-
frequency/high-severity risks. Biener et al. (2015) show that the problems with the insurability of
cyber risks lie in the highly interrelated losses, insufficient data availability, and information
asymmetries, that is, in moral hazard and adverse selection. Kunreuther and Michel-Kerjan (2004)
point out that pricing terrorism insurance needs to account for both systematic and systemic risks.

2.2 | Theoretical example for the demand and supply of pandemic
insurance

Recent studies (Hartwig et al., 2020; Klein & Weston, 2020; Richter & Wilson, 2020) identify
accumulation risk, covariance between the pandemic losses and the stock market performance,
and covariance between the pandemic losses and other insured losses as the key reasons for the
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lack of insurability. We build a model that explicitly incorporates these features in investors'
preferences and policyholder demand to assess their effect on equilibrium insurance prices.

The theoretical framework for the supply side is based on the three-moment CAPM first
proposed by Kraus and Litzenberger (1976). Including the third moment accounts for skewed
distributions when setting the required return from an investor's perspective.’ In Appendix A,
the derivation of the model is laid out in detail.

In a two-point in time setup with =0, 1, the insurance premium F,; of policyholder j for
(pandemic) claim payments S;; is determined by the three factors,

1
1+

Rj= [E(Sl,j) — biPyjfs,, — bZPO,jVSIJ], 1)

where r¢ stands for the risk-free rate of return. From the shareholder perspective, the required
insurance premium is given by the discounted certainty equivalent that results from adjusting
the expected claims payments by two factors. The first factor reflects systematic risk ‘3514 and
has the market risk premium denoted by b;. The second factor reflects systematic coskewness
Vs, and b, stands for the market coskewness premium, which is given by the relation
My — Te = by + by, where u,, stands for the expected rate of return of the market portfolio. The
definitions of the market portfolio including pandemic losses and the premium loading factors
b1Po,j,351J and b, P, J¥s,, are defined and discussed in more detail in Appendix A.

The market price of risk b; is positive in a capital market with risk-averse investors and
systematic risk. A systematic risk premium charge resulting from a negative systematic risk
(,BSU) comes into play if (a) the (pandemic) loss tends to be above average in times of below-
average capital market returns, and if (b) the (pandemic) loss to be insured tends to be above
average when the pandemic loss rate is above average, too. The pandemic loss rate is thereby
defined by the relation between the aggregate (pandemic) losses and the present value of the
market portfolio.

A premium charge resulting from the loading factor b,y takes place if above-average

loss payments prevail in situations of large deviations of the market portfolio return from its
mean—which may be due to high pandemic loss rates in otherwise normal capital market
scenarios. The more severe the losses are in situations of extreme capital market returns, the
higher the markup on the insurance premium becomes. Thus, high cumulative risks, as re-
flected by a high pandemic loss rate, can exacerbate the coskewness markup through their
effect in the market portfolio.

Investors' coskewness preferences imply that the tail characteristics of the loss distribution
will affect the equilibrium price of insurance. In particular, the equilibrium price of insurance
will be higher for loss distributions with higher accumulation risk, stronger (negative) covar-
iance between the pandemic losses and the stock market, and stronger (positive) covariance
between pandemic losses and other insured losses.

Depending on additional assumptions regarding market conditions, the theoretical equili-
brium premium can be lower or higher than the one derived in Equation (1). If the default risk

3While there has been criticism on the three-moment CAPM by, for example, Post et al. (2008) and Dertwinkel-Kalt
and Koster (2019), it is a widely acknowledged pricing approach (see, e.g., Langlois, 2020; Schneider et al., 2020) that
seems to be especially suited for pricing insurance for “low frequency-high severity” loss distributions Wen

et al. (2008).
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of the insurance provider exists, the competitive premium will be lower than F,;. As shown in
the seminal paper of Doherty and Garven (1986), the discrepancy between the premium
without default risk of the provider, F,j, and the premium with default risk is given by the
present value of the default put option. The present value of the default put option results from
the discounted expected value E under the risk-neutral distribution Q of the put option
(L1,ins — A1,ins)T. Thereby, Ly ins (A;,ins) denotes the insurer's stochastic liabilities (assets) at time
t =1, and the discount factor is based on the riskless rate of return. As shown in Doherty and
Garven (1986), switching from the empirical expectation of the put option E (L; ins — A1,ins)” to
EQ(Ly ins — A1ins)™ can be achieved via the risk adjustment of the CAPM. Hence, if the default
risk of the provider is of relevance, the introduced model setting can be used, but needs to be
adjusted using the present value of the default put option, as laid down in Doherty and Garven
(1986), to adjust the insurance premium.”

Frictional costs typically increase the premium. In the contribution of Doherty and Garven
(1986) and Garven (1992), frictions in the form of corporate taxes are introduced. Assuming
that investors are subject to personal taxation and can invest in (risk-adequately priced) assets
for which taxation on the corporate level is not in force, the present value of the insurer's
corporate taxes is fully added to the competitive premium P, ;. Hence, under these assumptions,
corporate taxes are solely paid by policyholders. Similar results regarding the pricing of in-
surance contracts in the context of various agency costs (e.g., costs of equity arise due to the
separation of ownership and control) are provided in Braun et al. (2015).”

As pointed out in Doherty (1991), Froot and Stein (1998), and Froot (2007), the provider's
bankruptcy costs can lead to an additional loading on the premium. In the setting of Froot and
Stein (1998), an additional markup on the premium results from (a) the (finite) amount of
equity capital of the provider and (b) a convex cost-of-capital function for raising external
capital, needed, for instance, to avoid insolvency. Thereby, the provider acts like a risk-averse
decision maker requiring a higher insurance premium to avoid or compensate the cost-of-
capital surge.6 However, unlike in the case of an individual decision maker, the degree of risk-
aversion is an endogenous variable and results from the influencing factors (a) and (b).

For the demand side, we employ a preference function for the insurance customer that,
besides mean and variance of wealth, takes its skewness into account.’” Purchasing a coverage
for insurance is advantageous for a decision maker j if the preference value ® of her wealth
distribution W, in t=1 with insurance is larger than the preference value of her wealth
distribution W;"/° in t=1 without insurance, that is, ®(W;"'") — &(W,"/°) > 0.° By setting
rf =0 and defining the risk adjustment of the insurance contract R,q as presented in
Equation (1) by

Ragj = —b1BofBs, — baPoYs, )

“If the insurer's equity capital is ceteris paribus increased, the present value of the default put option converges to zero.
Hence, as Cummins (1988) and Garven (1992) point out, the CAPM can be interpreted as a special case of the option
pricing model first presented in Doherty and Garven (1986).

>Compare Braun et al. (2015).

°In case investors expect an increase of idiosyncratic risk of the insurer through risky asset and liability substitution
following pandemic-caused financial distress, such expected “gambling for resurrection” can further increase the
required pandemic insurance premium. Risky asset substitution was, for example, documented for life insurance by
Wells et al. (2009).

“Compare Tsiang (1972), Mitton and Vorkink (2007), and Kraus and Litzenberger (1976).

8For simplicity reasons, we omit the index j in what follows.
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insurance for pandemic risks will be purchased if
a a?
—AE[Sl] - (1 + A)Rad] + E(Var(Sl) - 2COV(A1, Sl)) + Z(yw.lmth - yVVIW/O) > 0. (3)

Thereby, A, is the insurance customer's stochastic asset endowment at time 1, S; is the
stochastic (pandemic) loss, 4 denotes an adjustment in percent on the premium P, (cf.
Equation 1) to cover the insurer's default put option value or costs arising from (regulatory)
frictions as discussed above, a > 0 stands for the customer's risk-aversion parameter and Yw: for
the skewness of the customer's wealth distribution.

Inequality (3) provides an economic interpretation of the main factors for purchasing pandemic
insurance. By purchasing insurance, the insurance customer gets rid of the risk contribution
stemming from the pandemic risk %(var(Sl) — 2cov(A4;, S1)). The typical case is a negative

cov(4,, Sp), that is, the loss tends to be above average in states in which the policyholder's assets
have a value below average. As an example, a privately owned firm in the tourism sector with
different lines of business might be exposed to pandemic-caused business interruption risk in one
line of business (e.g., in the hotel sector), and at the same time, noninsurable revenue risks may
realize in another line of business (e.g., in renting out apartments). The individual pandemic risk
contribution is hereby higher than reflected by the mere loss variance var(S;).

The background risk covariance term cov(4;, S;) also maps the phenomenon of “charity
hazard,” defined by Browne and Hoyt (2000) “as the tendency of an individual at risk not to
procure insurance or other risk financing as a result of a reliance on expected charity from
others such as friends, family, community, nonprofit organizations, or a government emer-
gency program.” A negative cov(4;, S1), before taking unemployment benefits, debt relief, or
pandemic-related government aid programs into account, would become smaller in absolute
terms by including these measures which raise the value of customer's asset endowment in a
pandemic, thus making pandemic insurance purchasing less advantageous.”

The last term %Z(ywlwnh— waw/”) in Inequality (3) reflects the individually valued

change in the skewness of the customer's cash-flows when purchasing insurance. It can be
expected to be positive: Positively skewed uninsured pandemic losses will—due to their
negative sign—lower the positive skewness of the insurance customer's wealth position.
Therefore, pandemic insurance, by taking away the pandemic risk from the individual,
increases the positive skewness of the customer's final wealth, and hence increases her
preference value.

The analysis of insurance demand implies that insurance customers are willing to pay a
higher price for pandemic insurance if a pandemic risk also affects wealth and income com-
ponents that are indirectly hit by the pandemic outbreak. An example could be losses in
revenues in other uninsured lines of business or higher tax payments in the aftermath of a
pandemic to refinance pandemic-related government aid programs. In addition, the insurance
customer's willingness to pay increases the more pandemic risks contribute to a lower positive
skewness of final wealth if they remained uninsured. If a state-dependent utility function was

The existence of charity hazard in the context of pandemic insurance has been stated in several articles (Hartwig
et al., 2020; Klein & Weston, 2020; Richter & Wilson, 2020). As to flood insurance, recent empirical evidence has
suggested the existence of charity hazard (Andor et al., 2020; Kousky et al., 2018).
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considered,'’ attributing higher disutility to pandemic-induced existence-threatening loss
states, an even higher willingness to pay will result.

There are further determinants for the demand of pandemic insurance beyond the proposed
theoretical approach: There is experimental evidence that a nonperforming risk of insurance
contracts—going either back to an insurer's insolvency or its unwillingness to settle claims—
leads to a massive drop in insurance customers’ willingness to pay.'' Insurance demand may
therefore decline to an extent that cannot be explained by traditional expected-utility theory.
The straightforward reason for nonperforming risk is an increased insurer's underwriting risk
through building up a pandemic insurance portfolio. Moreover, since 2020, legal disputes about
insurers’ obligations to settle pandemic risk losses were observed. Both effects can lead to
insurance customers assigning a relatively high nonperforming probability to pandemic in-
surance coverage resulting in decreased pandemic insurance demand.'”

(Perceived) nonperforming risk can also increase if insurers suffering huge pandemic losses
are expected to “gamble for resurrection” by engaging in risky asset and liability substitution.
Given the creditor position of insurance customers, insurance demand will drop due to in-
creasing default risk. Thus, risky asset and liability substitution can be an obstacle for a pan-
demic insurance market through its impact, both on the insurance price, and the overall risk
situation of the insurer.

A comprehensive empirical calibration of the theoretical model setup, as presented
and discussed in this chapter, is difficult to obtain. The reasons for that have been widely
discussed in the literature (cf. in general Roll, 1977; in particular Cummins, 1991;
Cummins & Harrington, 1985), and the arguments raised in these contributions are fully
valid until now. In addition, large data samples are needed to provide a stable estimation
particularly for the coskewness. This holds particularly true whenever the different
variables are not stochastically independent. However, the theoretical model presented in
this section is important to clarify which parts of the potential markup on the competitive
premium can be estimated yet, and where, in light of the economic benchmark of the
theoretical model, the empirical markup calculation can be extended in the future, given
improved data availability.

3 | PANDEMIC INSURANCE CONTRACT

We consider a hypothetical contract designed to compensate for the loss of income to in-
dividuals employed in sectors that require in-person physical interaction and thereby carry a
risk of an infection. In exchange for an up-front premium P, the contract stipulates a contingent
constant monthly payment C for T months, triggered by a predefined rule contingent on the
infection spread rate, its health impact, and so forth. The probability of the pandemic is g.
Then, in the case of a pandemic, the payment of the contract to a policyholder is CT.
The expected loss of a contract to an insurer is gCT.

In the baseline calibration, we set T=12 and C=$2000, that is, the contract provides
compensation for the loss of basic income of $2000 for the period of 12 months. We also
consider two alternatives, C =$1500 and $1000. A similar contract can be offered to small

YCompare Brown et al. (2016).
HCompare Wakker et al. (1997) and Zimmer et al. (2009, 2018).
2Compare Samuel (2021) for the respective UK situation.
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businesses providing in-person services, in which case the insurance contract would cover the
loss of revenue during the pandemic.

The choice of a hypothetical contract is motivated by Chetty et al. (2020a) as well as
Alexander and Karger (2020), who argue that the direct financial support to individuals
and small businesses is best suited to mitigate the economic hardship during the COVID-19
pandemic. Chetty et al. (20202) document that high-income individuals sharply reduced their
spending in geographic areas with high infection rates and in sectors with in-person interac-
tion. The reduction translated to the decrease in revenue in small businesses that cater to high-
income households in person. These services are provided by local businesses, whose revenues
in the most affluent zip codes fell by more than 70% between March and late April 2020,
compared with 30% in less affluent areas. As businesses lost revenues, they reduced employ-
ment, particularly for low-wage employees. These results corroborate the analysis of consumer
spending data linked to cell phone records by Alexander and Karger (2020). They find that stay-
at-home orders caused large reductions in spending in sectors associated with mobility.
Interestingly, Chetty et al. (2020a) also found that state-ordered reopenings of the economies
have a small impact on spending and employment, supporting the assertion that the high
infection rate collapses the demand for in-person services.

The design of a trigger of a pandemic insurance contract needs to facilitate risk pricing for
an insurer. In our empirical assessment below, we rely on the information on infection rates,
that is, an objective mechanical trigger. The experience of the COVID-19 outbreak has shown
that testing capacity can be limited in the early stages of the outbreak which can delay or
reduce the reliability of the objective measures of the infection. An alternative specification of
the trigger is a declaration of the epidemic/pandemic by a national or a supranational authority
or a shut-down mandated by the government. While such actions might be taken promptly, the
trigger based on public authority actions adds political risk and complicates risk pricing. Po-
tentially, a public authority action trigger can also lead to external moral hazard by policy-
makers, that is, it decreases their incentives to mitigate the consequences of a pandemic
outbreak if there is sufficient private insurance coverage (Richter & Wilson, 2020).

4 | EMPIRICAL ASSESSMENT OF THE PRIVATE
MARKET FOR PANDEMIC RISKS

We develop an empirical assessment of the market for pandemic risk insurance in the context
of a hypothetical insurance contract. The key insight of the theoretical framework above is that
the equilibrium insurance price depends on the characteristics of the loss distribution and the
interrelationship between the insurers' asset portfolios and prospective policyholders' income
loss with the market portfolio. Building on the theoretical framework, in Section 4.2 we start by
estimating how the price of NatCat insurance in the United States depends on the tail char-
acteristics of the loss distribution. The estimated pricing model describes the equilibrium
pricing of catastrophe risk in a developed insurance market as a function of the tail of the loss
distribution characteristics.

Next, we calibrate the loss distribution of the hypothetical insurance contract in Section 4.3.
The frequency of the pandemic is calibrated using the epidemiological analysis of the emerging
infectious diseases (Jones et al., 2008; Ross et al., 2015). These studies report an increasing
frequency of the emerging infectious diseases like COVID-19 driven by socioeconomic, en-
vironmental, and ecological factors. Given the high degree of uncertainty and complexity
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regarding the frequency of these diseases, we use 1-in-100 years as a baseline and calibrate the
loss distribution for a range of alternative frequencies. The severity of the losses of the
hypothetical pandemic insurance contract is calibrated using the data set on the economic
impact of COVID-19 developed by Chetty et al. (2020b) and the Opportunity Insights Team,
and the COVID-19 infection rates data.

Using the expected shortfall of the calibrated loss distribution of the hypothetical pandemic
insurance contract and the estimated empirical model on the pricing of catastrophe risks, we
derive the markup of the pandemic insurance contract. We compare the estimated markup of a
pandemic insurance contract to the realized markups in the catastrophe insurance market.

41 | Data

Our empirical analysis combines five data sources: information of the economic impact
of COVID-19, the US catastrophe insurance market data, the US natural hazard data, and
financial market and credit ratings data.

4.1.1 | Data on the economic impact of COVID-19

Chetty et al. (2020b) and the OIT have developed a publicly accessible platform that measures
spending, employment, small-business activity, and other economic indicators at a high-
frequency granular level using anonymized data from private companies in the United States.
Most of the data time series start in 2018 or 2019, depending on the series, and are reported
daily at the ZIP code level. Combined with the infection rates reported by the CDC in the
United States, the frequency, and the granularity of the OIT data as well as its public access
provide a unique opportunity to track the economic impact of the pandemic for individuals and
small businesses depending on COVID-19 infection rates and government actions.

4.1.2 | Catastrophe insurance market data

We estimate the model of the equilibrium insurance pricing of NatCat exposures using the
insurance company-level data in the United States. In our analysis, we use the annual reg-
ulatory statutory filings of these property-casualty insurers to the National Association of
Insurance Commissioners (NAIC). The sample consists of the individual insurance companies
with DPW in business lines with exposure to NatCat risks as classified by the NAIC in the
United States. Twelve business lines are exposed to catastrophe risk, including commercial auto
physical damage, commercial multiple peril (nonliability), earthquake, farmowners' multiple
peril, federal flood, fire, homeowners' multiple peril, inland marine, multiple peril crop, private
passenger auto physical damage, private crop, and private flood. The insurance coverage of
these lines includes physical damage to the property from natural hazards or business inter-
ruption coverage caused by physical damage, and thus it is subject to catastrophic risks from
natural hazards in the hazard-prone zones. We obtain information on the DPW at the
state—company-year level. The state-level granularity is important, as states vary in their ex-
posure to natural catastrophes, for example, a hurricane is more likely to occur in Florida than
that in Montana.
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Although insurers do not report insurance prices in their annual statutory filings, the
price markup, that is, the ratio of direct premiums to paid losses for each accident year in a
given line of business, can be calculated from the regulatory filings. Consistent with the
approach adopted in Cummins and Danzon (1997) and Sommer (1996) to calculate insurance
price markups, we collect the information on actual paid losses and other expenses reported
in Schedule P of insurers' regulatory filings. For each accident year, Schedule P provides
information on paid losses for the subsequent 10 years for long-tail lines and 2years for
short-tail lines."” For long-tail lines, during the 10 years starting from the accident year, the
payments related to the losses in the accident year are practically exhausted. Thus, the
discounted sum of these payments represents the total paid losses for each accident year.
Dividing the DPW by the total paid loss provides a markup, which is a premium above the
paid loss for each insured dollar of exposure.

To observe the complete series of loss payments during the 10 years beginning with the
accident year, we are restricted by data reporting until 2020 and thus restrict our analysis to
the period of 2001-2010. In the case of short-tail lines, the paid losses are reported for the
2 years including the accident year. To compare pricing across short- and long-tail business
lines, we collect the data for the same range of accident years 2001-2010 for all lines.
Furthermore, the NAIC Schedule P reporting standards aggregate the reporting of losses and
expenses of the twelve catastrophe risk lines in four broader lines as follows: (1) auto
physical damage, including commercial auto physical damage and private passenger auto
physical damage; (2) commercial multiple peril; (3) homeowners' and farmowners' multiple
peril; and (4) special property, including earthquake, federal flood, fire, inland marine, and
multiple peril crop. Therefore, the analysis of catastrophe risk pricing is conducted for these
four business lines.

The initial sample of the US property-casualty insurers consists of 4300 firms. We analyze
only those insurers that have positive direct premium written in catastrophe-exposed lines of
business in 2001-2010, which reduces the sample to 1118 firms, with a total of 60,167
firm-year-region lines of business observations. The DPW for these lines represent 24% of the
total US property—casualty insurance industry premiums in 2010. For the analysis of the effect
of market returns on catastrophe insurance pricing, we focus specifically on a sample of
publicly traded property-casualty insurers which represent 45% in terms of direct premium
written in our sample in 2010. Table B1 in Appendix B reports the list of publicly traded
insurance groups included in the sample.

4.1.3 | Data on the frequency and severity of natural catastrophes

SHELDUS is a county-level hazard data set for the United States that covers natural hazards,
such as thunderstorms, hurricanes, floods, wildfires, and tornados as well as perils, such as
flash floods and heavy rainfall. The database contains information on the date of an event,
affected location (county and state), and the direct losses caused by the event (property and
crop losses, injuries, and fatalities) from 1960 to the present. Given that we are limited to the
yearly granularity of the loss data in Schedule P, we aggregate the loss distribution estimates

3The long-tail lines with 10 years Schedule P reporting of losses and expenses include Homeowner, Farmowner, and
Commercial Multiple Peril. The short-tail lines with 2 years' Schedule P reporting include Auto Physical Damage and
Special Property.
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(property and crop losses) to yearly frequency, inflation-adjusted to 2010 as the base year, to the
state—year level for the period of 1980-2019.""

We model the loss distribution of natural catastrophes on the regional level, in which we
follow the S&P Market Intelligence regional classification.'” These regions contain states with a
similar type of natural hazard exposures. The assessment of the loss distribution at the regional
level enables us to increase the number of loss events and improves the assessment of the
natural hazard loss distribution. We then fit the loss data to a log-normal distribution for each
of the six regions: Mid-Atlantic Midwest, Northeast, Southeast, Southwest, and West. The loss
distribution parameters are reported in Table 1. Using the fitted loss distributions, we calculate
the standard deviation of losses and the 1% expected shortfall of the loss distribution at the
regional level.

41.4 | Market data

We collect the market data on the S&P 500 index and US 10-year constant maturity note rates
for the period 2001-2010 from Bloomberg. For a subset of publicly traded insurers, we also
obtain the stock price data for the period of 2001-2010 from Bloomberg, adjusting for corporate
actions.'® To discount the sequence of paid losses obtained from Schedule P of the US reg-
ulatory filings, we use the US Treasury yield curve.

We obtain A. M. Best insurers' financial strength ratings during 2001-2010. A. M. Best's
rating scale includes 14 rating categories ranging from A++ to D, out of which the six top
ratings A++ to A— are classified as secure ratings and the bottom eight B++ to D are classified
as vulnerable ratings. We aggregate the eight vulnerable ratings into one group as they apply to
a small subset (115 out of 1118 insurers) in our data set. The encoding of rating in our data set is
from 1—highest to 7—lowest.

4.2 | Pricing tail risk in the NatCat insurance market
4.2.1 | Econometric specification

We use the NatCat insurance market as a laboratory to evaluate how tail factors affect in-
surance pricing. The three-moment CAPM model discussed above formulates that the equili-
brium insurance price depends on the coskewness term containing three tail components:
clustering of pandemic claims, covariance of pandemic losses and stock market returns, and
coskewness of pandemic losses and other losses.

*We tested and found no time trend in the data.
155&P Market Intelligence platform regional classification includes six regions: Mid-Atlantic (MA): Pennsylva-

nia, Delaware, New York, District of Columbia, New Jersey, Maryland, Puerto Rico; Mid-West (MW): Wisconsin,
Illinois, Ohio, Michigan, Iowa, Nebraska, Missouri, Kentucky, Kansas, Minnesota, North Dakota, Indiana, South
Dakota; Northeast (NE): Massachusetts, Vermont, Maine, Connecticut, Rhode Island, New Hampshire;
Southeast (SE): Florida, Georgia, South Carolina, North Carolina, Tennessee, Arkansas, Alabama, West Virginia,
Mississippi, Virginia, Virgin Islands; Southwest (SW): Utah, Texas, Colorado, Louisiana, New Mexico,
Oklahoma; West (WE): California, Nevada, Wyoming, Arizona, Montana, Alaska, Washington, Hawaii,

Idaho, Oregon.

'Dividend payments, stock splits, and so forth.
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TABLE 1 Natural hazards loss distribution estimates by region

Panel A: Parameters of the fitted log-normal, Gamma, and Weibull distributions as well as the
corresponding goodness of fit p value. Results show that the null hypothesis of losses being
distributed according to log-normal, Gamma, or Weibull distribution, respectively, cannot be
rejected for any of the regions at 5%, only for the log-normal distribution

Gamma Weibull

Region LN parameters KS test parameters KS test parameters KS test
@ (€) 3 (C)) ) () ) ®) Q) (10)
MA 19.989 1.301 0.709 0.513  3.21E+09 0.042 0.581 6.17E+08 0.006
MW 21.559 0.833 0.69 1476  2.28E+09 0.408 1.070  3.06E+09 0.331
NE 18.013 1.405 0.643 0.539 3.95E+08  0.039 0.630 1.19E4+08  0.133
SE 21.586 1.334 0.857 0.674  8.67E+09 0.556 0.724  4.07E4+09 0.647
SW 21.622 1.232 0.932 0.611 1.10E+10 0.057 0.642  3.22E+09 0.078
WE 20.959 1.419 0.836 0.624  5.44E+09  0.229 0.698  2.34E4+09  0.488

Panel B: Columns (2) and (3) report the parameters of the LN distributions. Columns (4)-(6) report
the mean, standard deviation, and the 1% expected shortfall, in billion US dollars, respectively

Region LN parameters Mean SD ESy4
@ ) u (O 4) (5) (6)

MA 19.989 1.301 1.1178 2.3435 17.0266
MW 21.559 0.833 3.2625 3.2175 22.0573
NE 18.013 1.405 0.1785 0.4430 3.1835
SE 21.586 1.334 5.7657 12.6677 92.3049
SW 21.622 1.232 5.2473 9.9354 71.6728
WE 20.959 1.419 3.4670 8.8339 63.0065

Note: The table presents the statistics of the distributions fitted using SHELDUS Natural Hazard losses in 1980-2019 data by
region. Regions are abbreviated as follows: MA, Mid-Atlantic; MW, Midwest; NE, New England; SE, Southeast;
SW, Southwest; WE, West.

We estimate the following regression:
In(1 + Ay = By In(0%1); + Brs In(08s);, + BrIn Ry + % + 6 + €. (4)

The dependent variable (1 + 4);; is the insurance price markup of insurer i in year ¢, that is, the
ratio of DPW in the catastrophe-exposed lines of business to the discounted sum of paid losses (see
Section 4.1.2). The first two explanatory variables in (4) are the volatility of the loss distribution
(02,)ir and the 1% expected shortfall of the loss distribution (Ués)n of firm i in year t. R;; is the
insurers' rating, y; and 6; are the insurer- and year-fixed effects, and ¢ is the error term to account for
the unobserved factors driving the price markup. 8,,, Bgs, and By are parameters to be estimated.
Next, we explain and motivate the explanatory variables of the pricing model.

The first two explanatory variables in (4), (6%,); and (GEZS)it are the loss distribution tail
statistics that measure the clustering of catastrophe claims. With respect to the three-moment-
CAPM pricing formula (see Equation A7 in Appendix A), these two explanatory variables refer



878 X GRUNDL Er AL.
Journal of Risk and Insurance

to the markup going back to the cumulative-risk character of pandemic risks, and the cos-
kewness markup that is driven by the tail of the loss distribution. We expect that the loss
distributions with fatter tails result in higher equilibrium prices of insurance. Therefore, the
coefficients to be estimated, 8, and By, are predicted to be positive.

In the empirical specification (4), measures (02,); and (o4); correspond to the loss

distribution of an insurer's NatCat exposure across the geographic regions in which an
insurer is active in catastrophe risk business lines. At the same time, Schedule P data
report the firm-level loss development at the business line and state levels. To construct the
firm-year loss distribution at the regional level, we weight the loss distribution in region j by
aij, which is the share of DPW in catastrophic risks insurance in region j for each
insurer-year it; that is,

DPW;
Ofij[ - .
Zk DPWijy

To the extent that shares a;; vary across firms and years, an insurer faces a distinct dis-
tribution of losses depending on the profile of its exposures which would lead to distinct values
of (62,))i and (o) for insurer i in year t.

Estimation of the impact of the systematic risk of pandemic losses, that is, the covariance
between insurers’ losses and stock market returns (see Equation A7 in Appendix A), on the
price markup requires high-frequency data on insurance claims which are only reported at
annual frequency. To overcome this data constraint, we proxy the insurer claim experience by
its stock returns which is possible only for a subset of publicly traded insurers. Presumably,
high individual insurance company losses translate into negative returns (Ben Ammar, 2020;
Thomann, 2013). High losses going along with negative capital market returns contribute to a
positive covariance between losses and the capital market. For publicly traded insurers, we
estimate a modification of model (4) that also includes the beta of insurers' returns with the
market portfolio b;, for insurer i in year ¢

In(1 + )i = Boot (o1 )¢ + Brs IN(Tzs);; + By In(1 + bie) + e In Ry + 3+ 6 + &, (5)

where 8, is an additional coefficient to be estimated. We predict that a higher correlation
between the insured NatCat losses and stock market results in higher markups, that is, 8, is
positive.

For a subsample of publicly traded insurers, the comovement between insurer i's stock
performance in year ¢ and the market portfolio in year ¢, b; is estimated using insurers' stock
returns and the S&P 500 index in 2001-2010. We employ a standard two-factor CAPM speci-
fication following the methodology in Hartley et al. (2016) and estimate the following
regression:

Rit = a + byRm; + citRior + 13 (6)

where R;; is the return on stock i in week ¢, Ry, is the return on a value-weighted stock market
portfolio in week ¢, Ry, is the return on the US government bond with a 10-year constant
maturity in week ¢, and 7),, is a mean zero error term. The insurer—year estimate b; is used as an
input in the estimation of the markup regression (5).
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The third component of the coskewness term of the three-moment-CAPM model predicts a
premium markup due to a positive covariance between pandemic losses and other losses.
A limitation of the NatCat insurance market is that there is no covariance between the natural
hazard losses and other losses, for example, general liability insurance.'” Therefore, we cannot
include this factor in the pricing model. However, we recognize that this factor can be relevant
for pandemics during which pandemic losses are likely to be correlated with losses in other
lines like trade credit insurance or event cancellation insurance (Qiu, 2020). In this respect, our
analysis of pandemic insurance markup should be interpreted as a lower bound that does not
account for the correlation of losses across lines.

Beyond the components of the three-moment-CAPM model, the regression specifications
(4) and (5) control for the insurer's financial strength rating R;; assigned by the rating agency A.
M. Best, and they measure the claims' paying ability of insurers. Inclusion of the rating
accounts for the role of the insurer's financial strength for pricing. Policyholders require a
discount for insurance with a risk of contract nonperformance (Cummins & Danzon, 1997;
Doherty & Schlesinger, 1991; Epermanis & Harrington, 2006; Zimmer et al., 2018). Therefore,
the markup decreases in the insurer's rating. Although the insurer's insolvency risk is irrelevant
in the three-moment-CAPM analysis, accounting for market imperfections is important in the
empirical specification, as demonstrated in our results below.

The summary statistics of the variables in regressions (4) and (5) are presented in Table 2.
Table 2 Panel A reports the summary statistics of the markup, volatility, expected shortfall, and
a rating in the sample. Table 2 Panel B contains the correlation matrix between the variance,
expected shortfall, and the rating. It reveals that there is a strong correlation between the
variance and expected shortfall measures. One reason is that our construction of the insurers'
catastrophe loss exposures relies on regional loss distributions, which reduces the variability
within the regions. As a remedy to the collinearity issue, we estimate the markup model using
only the expected shortfall (and not the standard deviation) to characterize the tail of the loss
distribution. Table 2 Panel C reports the summary statistics by line of business.

4.2.2 | Empirical results

The estimation results of the markup regressions (4) are presented in Table 3. In Panel A, we
report the results of the regression in which all four business lines, auto physical damage,
commercial multiple peril, homeowners' and farmowners' multiple peril, and special property,
are pooled. The main coefficient of interest measuring the sensitivity of the price markup to the
expected shortfall of the loss distribution, is positive and significant. This indicates that a 10%
increase in expected shortfall leads to 1.5% increase in the markup. The coefficient measuring
the sensitivity of the price markup to the insurer rating is positive but not significant. The
regression in Table 3 Panel A also includes (unreported) firm- and year-fixed effects. The
insurer-fixed effects are mostly significant. The year-fixed effects are positive and significant for
2008, which coincides with the global financial crisis. Overall, the estimation of the markup
regression confirms that insurers charge higher prices for insuring the exposures with higher
expected shortfall, that is, higher tail risk.

In unreported analysis available from the authors, we have estimated the covariance between the insurer's NatCat
lines losses and losses on other lines and included it as a factor in the pricing model (4). However, the estimation results
show that this factor is not significant for the price markup of the NatCat insurance.
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TABLE 2 Natural catastrophe market summary statistics

Panel A: Sample statistics for all lines of business

(1) Sample ) 3) ) (5) (6)
size Mean Median SD Min Max
Markup 60,167 3.427 1.731 4.323 0.01 22.273
ES,4 of loss dist 60,167 0.0945 0.0099 0.4510 0.0000 16.5500
SD of floss dist 60,167 0.0131 0.0014 0.0625 0.0000 2.2710
Rating 60,167 2.971 3 1.217 1 7
Panel B: Correlation matrix
Variables @ ) 3)
(1) ESi4 1.000
(2) SD 0.9999 1.000
(3) Rating —0.1005 —0.1008 1.000
Panel C: Summary statistics by line of business
Line of (1) Auto (2) Commercial (3) Homeowner/ (4) Special
business physical damage MP farmowner property
Sample size 20,938 11,214 9527 18,488
Markup Mean 3.389 2.813 3.303 3.908
Median 1.691 1.335 1.703 2.107
SD 4.32 3.929 4.141 4.585
Min 0.01 0.01 0.01 0.01
Max 22.266 22.216 22.212 22.273
ES at 1% Mean 0.0073 0.1230 0.1354 0.0823
Median 0.0065 0.0217 0.0153 0.0083
SD 0.5126 0.3454 0.6298 0.2932
Min 0.0000 0.0000 0.0000 0.0000
Max 16.5500 4.8700 12.5900 6.9560
Rating Mean 3.008 2.979 2.951 2.936
Median 3 3 3 3
SD 1.269 1.147 1.254 1.177
Min 1 1 1 1
Max 7 7 7 7

Note: Panel A of this table presents summary statistics of the variables in the markup regression (4). Panel B reports the

correlation matrix of the loss distribution characteristics, expected shortfall and standard deviation, and insurers' ratings. Panel
C reports the summary statistics of the variables that enter the markup regression (4) by line of business. Expected Shortfall and
Standard Deviation statistics in Panels A and C are reported in billions of US dollars.
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TABLE 3 Pricing of natural catastrophe insurance
Panel A: Estimates for the pooled regression
Ln (markup)
Ln (ES;4) 0.1451%%
(0.0022)
Ln (rating) 0.0385
(0.0272)
Constant —2.1198%***
(0.1495)
R’ 0.41
N 60,167
Panel B: Estimates by line of business
Ln (Markup) @) 2) 3) 4)
Ln (ES;¢) 0.0904*** 0.0853%** 0.0834*** 0.1612%**
(0.0030) (0.0059) (0.0050) (0.0047)
Ln (rating) 0.0535* 0.1312%* —0.0461 0.1041%**
(0.0309) (0.0648) (0.0511) (0.0482)
Constant —0.7095%** —2.3710%** —1.2469%** —2.7699%**
(0.1448) (0.3119) (0.2578) (0.2889)
R 0.68 0.55 0.70 0.51
N 20,938 11,214 9527 18,488

Panel C: Test of differences on regression coefficients among the four lines of business

(1) Base (2) Compared (3) Ln (ES,%)
Line 1 0.1108%**
Line 2 0.0558%**
Line 3 0.0309%**
Line 4 0.1175%**
Line 2 0.1666***
Line 3 —0.0249%**
Line 4 0.0617***
Line 3 0.1417%**
Line 4 0.0867***

(4) Ln (rating) (5) Constant

—0.0101 —1.4114%**
0.0489 —1.364%***
—0.0115 —0.5541***

0.1353%** —1.9233%**
0.0388 —2.7754***
—0.0604* 0.8098***
0.0864*** —0.5593*+*
—0.0216 —1.9656***
0.1468*** —1.3691***

Note: Panel A reports the results of the pooled regression (4). Panel B reports regression results by line of business. Panel C
provides the pairwise ¢ test for differences between estimated regression coefficients across business lines reported in Panel B.
Firm and year fixed effects are not reported for brevity. *, **, and *** refer to statistical significance at 10%, 5%, and 1% levels,

respectively.

(1) Auto physical damage; (2) commercial MP; (3) homeowner/farmowner; (4) special property.

Due to computational capacities limitations the tests were performed not accounting for differences in firm fixed effects among
each pair therefore estimated coefficients differ slightly from those in Panel B. In each subsection, the first row shows the
estimated coefficients of the business line-specific regression; the subsequent rows show the difference between the coefficients
of the corresponding line with the baseline. The line coding is as in Panel B.



882 X GRUNDL Er AL.
Journal of Risk and Insurance

The four catastrophe risk business lines have distinct characteristics in terms of
coverage and customers. In particular, the homeowners' and farmowners' business lines
are personal insurance lines, while the other lines are either a mix of personal and
commercial (auto physical damage) or purely commercial lines (commercial multiple
peril, special property). In addition, the special property line is focused exclusively on tail
risks related to floods, earthquakes, and other hazards. Furthermore, the special property
line is subject to less price regulation, giving more scope for insurers to increase insurance
rates for heavy-tailed risks. For these reasons, the price markups can differ across business
lines. Therefore, we perform the price markup estimation (4) separately for the four
business lines.

The results of the estimation are reported in Table 3 Panel B. Table 3 Panel C provides a
formal pairwise test of the differences of the regression coefficients among the four lines of
business. The results reported in Panel B confirm that, while the expected shortfall is a
significant factor in the price markup in all business lines, there is variation in the pricing
factors across lines. The expected shortfall pricing premium is particularly large for the
special property lines that primarily cover tail risks. At the same time, the impact of the
expected shortfall on the price is less pronounced for homeowners' and farmowners'
insurance.

The impact of ratings on pricing also varies across business lines. Ratings matter for the
pricing of commercial lines, commercial multiple peril, and special property. However, an
insurer rating is only marginally significant (at 10%) for the auto physical damage line, which is
a mix of commercial and personal lines. Furthermore, ratings are not significant for the per-
sonal lines of homeowners' and farmowners' insurance. These results indicate the varying
sensitivity of insurance demand to insurers' insolvency risk between commercial and personal
insurance buyers, consistent with Basten et al. (2021) and Epermanis and Harrington (2006),
among others.

Next, we evaluate how the NatCat insurance price markup depends on the covariance
between the insurers' stock returns and the stock market. Table 4 Panel A presents the esti-
mated market betas of the two-factor CAPM model (6) for the subsample of publicly traded
insurers. In the overall sample, the mean and the median betas in Table 4 panel A are 0.799 and
0.813, respectively; the standard deviation is 0.524. In the time series, the betas of the
property—casualty companies are increasing over the period of 2001-2010, suggesting that the
property—casualty insurance stocks become more synchronized with the market over time,
which also reflects the influence of the 2008 financial crisis on the insurers' performance. This
trend is robust when the analysis is restricted to those companies present in all years. The
interest rates factor in regression (6) is not significant, consistent with the short-term nature of
nonlife insurance liabilities.

We estimate the markup regression (5) for a subsample of publicly traded insurers, using
the estimation results of the two-factor CAPM. The results are presented in Table 4 Panel B.
The coefficient of the market beta is negative but not significant. Hence, the covariance be-
tween the insurers' returns and the market does not have a significant impact on the price
markup of NatCat risks. This result is consistent with the limited impact of the NatCat events
on the financial market. However, the relationship might look different after writing the
pandemic insurance. As suggested by the market downturn at the inception of COVID-19
pandemic, one may expect a significant covariance between insurers' losses from pandemic
insurance losses and the stock market returns.
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TABLE 4 Pricing of natural catastrophe risks for public insurers

Panel A: Estimated market betas of public insurers

(2) Sample
(1) Time period size (3) Mean (4) Median (5) SD (6) Min (7) Max
Overall sample 440 0.799 0.813 0.524 —1.457 3.438
2000 35 0.494 0.472 0.377 —0.434 1.171
2001 36 0.572 0.602 0.312 —0.232 1.542
2002 36 0.594 0.708 0.515 —1.457 1.357
2003 39 0.670 0.775 0.458 —0.195 1.506
2004 42 0.724 0.780 0.427 —0.710 1.570
2005 42 0.672 0.793 0.509 —0.344 1.588
2006 42 0.848 0.855 0.466 —0.716 2.312
2007 42 0.835 0.906 0.402 —0.233 1.640
2008 42 1.000 0.999 0.502 0.008 2.281
2009 42 1.280 1.246 0.702 0.016 3.438
2010 42 0.980 0.989 0.434 —0.111 1.801

Panel B: Markup estimation for public insurers

Ln (markup)
Ln (ESi4) 0.1554%%*
(0.0032)
Ln (rating) —0.0048
(0.0377)
Ln (beta) —0.0505
(0.0465)
Constant —1.8555%**
(0.2072)
R? 0.42
N 28,282

Note: This table presents summary statistics of the estimated market betas for insurers in our sample. The overall sample
includes 42 P&C Insurers for the time period 2000-2010. As not all insurers were publicly traded for the entire period, the
number of estimations in each year differs and is presented in column (2). For each insurer-year, the market beta is estimated
only if the stock was traded for a minimum of 200 days.

This table presents the estimates of the pricing regression (5). Firm and year fixed effects are not reported for brevity. *, **, and
*** refer to statistical significance at 10%, 5%, and 1% levels, respectively.

4.3 | Calibration of the pandemic insurance contract loss
distribution and its markup

4.3.1 | Calibration of the pandemic insurance contract loss distribution

The insurance payment of the hypothetical insurance contract is triggered by an increasing
infection rate which leads to the reduction of in-person business activity due to the risk of



884 X GRUNDL Er AL.
Journal of Risk and Insurance

infection. To calibrate the loss distribution of the contract, we need to assess the severity of
losses and the frequency of pandemics.

Literature on assessing the economic effect of a pandemic typically uses scenario analyses to
predict the impact of a global pandemic on economic indicators (Keogh-Brown et al., 2008;
McKibbin & Sidorenko, 2006). We employ a different approach by making use of the data
reported in Chetty et al. (2020b) and the OIT to calibrate the severity of the pandemic loss
distribution in terms of unemployment cost. Table 5 reports the estimates of the changes in
different types of economic activity, depending on the newly reported cases of COVID-19
infection. The estimation results indicate a strong statistically and economically significant
relationship between the infection rates and the economic activity and employment. Panel A
reports the results for the whole period of the COVID-19 pandemic until October 31, 2020.
Columns (1) and (2) reveal that the growth in infection rates leads to a rise of new un-
employment claims and reduces the employment of workers in the bottom quantile of the
income distribution. To illustrate the economic significance, the rise in infection rates from
0.0654 to 49.2 per 100,000 inhabitants, thereby reflecting the dynamics of new cases in
New York state during the first COVID-19 wave between 07 March 2020 and 11 April 2020,
leads to 1,200,066 new unemployment claims and reduces the employment in the bottom
quantile by 6.92%. Column (3) shows that the impact of rising infection rates was also negative
for the two middle quantiles of the income distribution, though its magnitude was smaller than
for the bottom quantile. The growth of the infection rate also reduces the revenues of small
businesses and the number of open small businesses, as reported in columns (4) and (5).

In 2020, the strongest contraction of employment and small-business economic activity
occurred during the first wave of the infection in February-March 2020 in the United States.
Table 5 Panels B-D report the regression results on the impact of new COVID-19 cases on the
initial unemployment insurance claims, the change in the number of small businesses open,
and the changes in their revenue, respectively, during the three quarters in 2020. Comparing
the regression coefficients between the first and the other three quarters emphasizes the im-
portance of the initial shock of the infection outbreak. Once the businesses are closed and
workers are let go during the first quarter, the subdued economic activity persists through the
following quarters.

The estimation results of Table 5 allow us to model the loss distribution of the hypothetical
pandemic insurance contract. To calibrate the severity of the loss distribution, we use the
predicted new unemployment claims occurring due to the growing infection rates as reported
in Table 5 at the county level. We consider each county in the United States as a homogeneous
unit, and fit the distribution of the predicted number of unemployment claims per county,
scaled by a factor equal to US population in 2019 divided by county population in 2019, to a log-
normal distribution. In total, our sample consists of 3141 counties in the United States. The
result is the empirical distribution of predicted new unemployment claims across the US
counties caused by the pandemic. We use this empirical distribution to assess the standard
deviation and the expected shortfall of the loss distribution for the hypothetical insurance
contract.

Turning to the frequency of pandemics, Jones et al. (2008) report a growing frequency of
emerging infectious diseases that, like, COVID-19, originate in wildlife and have recently
entered human populations for the first time. The most prominent examples before 2019 were
Ebola, HIV/AIDS, and SARS. Ross et al. (2015) discuss the challenges of the international
health regulations that need to be resolved to reduce the human and economic damage of
emerging diseases. Considering the evolving nature of the risk, we calibrate the model for a
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TABLE 5 Economic indicators dependency on COVID-19 new cases rate per 100,000 people

Panel A: Impact of COVID-19 new case on main economic indicators for the time period of
01.02.2020-31.10.2020

@ ) 3) )] 6)
COVID-19 new case rate daily —0.0031*** —0.0012%** —0.0030%** —0.0028***
(0.0000) (0.0000) (0.0000) (0.0000)

COVID-19 new case rate weekly 0.2993***

(0.0894)
R? 0.63 0.3 0.33 0.29 0.34
N 50,164 119,582 140,067 124,624 124,624

Panel B: Impact of COVID-19 new case rate on new unemployment insurance claims, by subperiod

[01.02-28.03] [29.03-27.06] [28.06-30.09] [01.02-30.09]
COVID-19 new case rate = 29.0734*** 0.9153%** —0.0536 0.6937**
weekly
(6.2932) (0.2834) (0.0738) (0.1511)
R’ 0.27 0.78 0.91 0.62
N 10,779 17,974 16,538 45,291

Panel C: Impact of COVID-19 new case rate on percent change in number of small businesses open, by
subperiod

[01.02-28.03] [29.03-27.06] [28.06-30.09] [01.02-30.09]
COVID-19 new case —0.0162%** —0.0007%* 0.0005%** —0.0035%**
rate daily
(0.0011) (0.0000) (0.0000) (0.0001)
R? 0.22 0.54 0.84 0.28
N 28,541 40,857 41,307 110,705

Panel D: Impact of COVID-19 new case rate on percent change in net revenue for small businesses, by
subperiod

[01.02-28.03] [29.03-27.06] [28.06-30.09] [01.02-30.09]
COVID-19 new case —0.0217%* —0.0004%** —0.0000 —0.0034%%*
rate daily
(0.0015) (0.0001) (0.0000) (0.0000)
R? 0.21 0.52 0.79 0.32
N 28,541 40,857 41,307 110,705

Note: This table presents estimates of a linear regression where a dependent variable is a weekly change in an economic
indicator and an explanatory variable is the weekly number of new COVID-19 cases per 100,000 people. The economic
indicators are: (1) Count of initial unemployment insurance claims; (2) employment level for workers in the bottom quartile of
the income distribution (incomes approximately under $27,000); (3) employment level for workers in the middle two quartiles
of the income distribution (incomes approximately $27,000-$60,000); (4) number of small businesses open calculated as a 7-day
moving average seasonally adjusted and indexed to January 4-31, 2020; (5) net revenue for small businesses, calculated as a
7-day moving average, seasonally adjusted, and indexed to January 4-31, 2020. Panel A reports the estimates for the whole time
period from February 01, 2020 to October 31, 2020 for 3143 US counties. Panels B-D report subperiod estimates for the
indicators (1), (4), and (5), respectively. County fixed effects are included but not reported for brevity. *, **, and *** refer to
statistical significance at 10%, 5%, and 1% levels, respectively.
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range of plausible frequencies. In terms of its global impact, COVID-19 can be compared with
the Spanish Flu outbreak in 1917, which is consistent with the 1-in-100 years frequency. We use
the 1-in-100 years frequency as a baseline and extend the estimation to alternative frequencies
of 1-in-50 and 1-in-20 years to assess the sensitivity of the estimates.

Given the baseline assumptions that the contract provides coverage for the basic income of
$2000 for 12 months, the insurer's per contract loss payment is $24,000. Then, using the pre-
dicted new unemployment cases caused by the rise of the infection rate in each county in the
United States, we can estimate the total new claims and the claim costs as a function of the
infection rate. Results in Table 5 Panels B-D show that most new unemployment cases caused
by the pandemic occurred during the initial phase in February-June 2020. Therefore, we
calibrate the loss distribution of the hypothetical insurance contract using the new un-
employment claims reported during February-June 2020.

Under the baseline assumptions, the parameters of the fitted log-normal distribution of
pandemic insurance contract losses are u = 29.95 and o = 1.59. Table 6 Panel A reports the
statistical characteristics of the loss distribution for the baseline monthly payout of $2000, and
for two alternative less-generous contract monthly payouts of $1000 and $1500. The losses of
the hypothetical contract are reported on the aggregate industry basis. For the baseline case
of $2000, the estimated standard deviation of $1.77 million and the estimated expected shortfall
of $4.6 trillion are the aggregate insurance industry loss distribution characteristics if the small-
business workers held the hypothetical unemployment insurance contract before the pan-
demic. The estimated expected shortfall reduces by around $1 trillion for each of the $500
reduction in the monthly payout. To illustrate the role of pandemic frequencies on the tail
characteristics of the loss distribution, Table 6 Panel B reports the tail statistics for the baseline
payout of $2000 with different frequencies. These findings show that increasing the frequency
of the loss from 1-in-100 to 1-in-20years multiplies the expected shortfall estimates by
seven times, from $4.6 trillion to $32.4 trillion.

4.3.2 | Calibration of the pandemic insurance contract markup

To estimate the markup of the pandemic insurance contract using the catastrophe risk pricing
models (4) and (5), we need to allocate the industry-wide loss distribution to individual in-
surers. We consider the market shares of 1%, 2%, and 3% of the exposure. These market shares
correspond to the actual market shares of larger property-casualty insurance groups in the
NatCat risk market with assets above $4 billion.

Table 7 reports the allocated insurer-level expected shortfalls as well as the estimated price
markup using the pooled model of catastrophe risk lines and the industry average rating of 2.97
equivalent to A rating, for individual insurers with market shares varying from 1% to 3% in case
of the baseline payout of $2000. The estimated markup for these market shares ranges between
4.5 and 5, meaning that the contract requires a premium of 4.5-5 times higher than the
expected loss. These estimates correspond to the top 20% of the observed markups in the
NatCat risk insurance market.

The results are illustrated in Figure 1. The red segment in Figure 1 depicts the range of
expected shortfall and the corresponding markup for monthly payout amounts of $2000 for an
insurer covering between 1% and 3% of this hypothetical market, obtained using the estimates
of (4) and (5) and the 1% expected shortfall of the pandemic loss distribution. The cloud of blue
dots represents the values of the markups and the expected shortfalls for insurers in the sample.
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TABLE 6 Characteristics of loss of the hypothetical contract given the COVID-19 pandemic loss

Panel A: Characteristics of loss of the hypothetical contract industry wide, for different payout

Contract payout ($) SD (trillion $) ES,, (trillion $)
2000 1.77 4.6
1500 1.32 3.5
1000 0.88 2.3

Panel B: Characteristics of loss of the hypothetical contract industry wide, for different pandemic
frequency

Frequency SD (trillion $) ES, o, (trillion $)
0.01 1.77 4.6
0.02 2.49 16.8
0.05 3.95 32.4

Note: This table presents the loss distribution of our hypothetical contact given the distribution of the number of
unemployment claims. Note that we assume the contract to be triggered only in case of positive claims, therefore we exclude a
negative predicted number of claims and this might lead to slightly overstated number of claims compared with the observed
ones. Panel A shows figures for our baseline contract with a payout of $2000 and for contracts with a payout of $1500 and
$1000 for comparison. Panel B compares the loss characteristics of our baseline contract estimated for a pandemic frequency of
0.01 with its loss if the pandemic frequency is assumed 0.02 and 0.05.

TABLE 7 Insurer level expected shortfall and estimated markup

Market share (%) ES, 4, (billion $) Est. Markup (1 + 1) Quantile (%)
3 138 5.17 19.64
2 92 4.88 20.78
1 46 4.41 22.76

Note: This table presents the expected shortfall for a confidence level of 1% and estimated markup for firms covering a market
share of 1%, 2%, and 3% of our hypothetical pandemic unemployment insurance market. The markup has been estimated
assuming the average rating in our data set, 2.97133 (A). The last column places the estimated markup in the distribution of
markups in our sample and shows what percentage of markups in our sample are higher than the estimated markup for
pandemic unemployment insurance.

Figure 1 shows that the expected shortfall of the pandemic loss distribution is higher than the
typical shortfall of NatCat losses. Thus, the markup that the insurers would require to provide
coverage for pandemic losses will also be higher.

Several other factors are important to consider for the assessment of the potential private
market for pandemic insurance. One factor is the allocation of losses among individual insurers
and the impact of the pandemic insurance payouts on insurers' solvency. The estimation of the
pricing of catastrophic risk shows that only 41% of the variation in the markup is explained by
the expected shortfall in the pooled regressions with all business lines, Table 3 Panel A, while
the rating is not a significant factor in this estimation. By contrast, the line of business analysis
of the markup reported in Table 3 Panel B reveals that there is a significant effect of credit
ratings for the commercial lines of insurance, like, commercial multiple peril and special
property. The elasticity of the markup to ratings is similar and sometimes higher than the
elasticity to expected shortfall.
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FIGURE 1 Markup as a function of expected shortfall, log-log regression. This figure plots the fitted
regression line of the logarithmic of markup, given the logarithmic of the expected shortfall of the loss
distribution at 1% and fixing rating to the average in our data set, 2.97133. The red segment represents the
Hypothetical Pandemic Unemployment Insurance contract burden for firms with a market share

of 1%-3%

Only a dozen of insurance firms in our data set has net assets of the same range as the
calibrated expected shortfall for an insurer with 1% market share in pandemic insurance
market. The reason is that the expected shortfall for the calibrated pandemic insurance is
approximately 50-100 times higher than the expected shortfall of a NatCat event estimated in
any of the regions on industry aggregate level. The density of losses of the severity distribution
of the pandemic insurance contract is significantly more concentrated in the right tail com-
pared with the density function of the distribution of NatCat losses. Therefore, supply of
pandemic insurance can be limited due to the impact of pandemic risk exposures on compa-
nies' insolvency risk.

Another consideration is that the demand for catastrophe insurance is sensitive to income.
Therefore, the excessive markups of the pandemic insurance contract can further reduce in-
surance coverage. Browne and Hoyt (2000) analyze the flood insurance market in the United
States and find that income and price are influential factors in the decision to purchase flood
insurance. Their estimates of the price elasticity of insurance demand range between 0.109 and
0.997. The income elasticity of demand is estimated between 1.506 and 1.400. Millo (2016)
estimates the income elasticity of demand on the aggregate insurance market level and finds
that the elasticity is around one. These factors are particularly relevant for designing pandemic
insurance coverage for lower-income workers and for small- and medium-size businesses.
Relatedly, our current analysis does not address the relationship between the insurance price
and the take-up rate. On one side, making the pandemic insurance coverage mandatory by
the government effectively would shift risk-bearing to the government instead of the insurance
industry. On the other side, lower take-up rate would reduce the expected shortfall but would
also make the pandemic insurance less meaningful.
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Pandemic risk has several specific characteristics that distinguish it from the NatCat risk
market which we use as a laboratory to calibrate the pandemic insurance markup. Unlike
NatCat risk, pandemics have no geographic diversification. We address this concern by clus-
tering of NatCat loss data to the regional level and using observations on regional level
(firm-year-region line of business) in our main markup regression. Given that within a region
NatCat losses tend to be highly correlated among states in the same region, the use of markup
data on regional level improves comparability to pandemic risk.

In addition, pandemic is a systematic risk across multiple business lines, for example,
event cancelation and workers compensation. Furthermore, the ability to measure the in-
fection characteristics and spread speed relies on the public health system. Thus, the basis
risk of the pandemic insurance contract will also depend on the reliability and effectiveness
of the public health sector. Finally, unlike the NatCat events that are limited in time by
geophysical factors, the stopping time of the pandemic depends on the investment in vaccine
development as well as the geopolitics of vaccine distribution. These factors cannot be
evaluated within our empirical framework, but they will be important for the pricing of
pandemic insurance products.

More broadly, pricing pandemic insurance requires a new generation of pandemic risk
models that are capable to model the link between the infection diseases characteristics, that is,
number of fatalities, speed of transmission, and so forth, and their economic impact. Our
approach of linking the economic indications and the infection rates to calibrate the loss
distribution of a hypothetical pandemic insurance contract is a first step in this direction. Also,
the models need to have sufficient resolution to price differences between the risks, for ex-
ample, the price of insurance for essential and nonessential workers. Qiu (2020) discusses a few
principles to establish credible pandemic models for the future. He argues that the COVID-19
insurance market environment is similar to the post-9/11. Before 9/11, terrorism models did
not exist, and terrorism coverage was often included without charging an additional premium.
But post-9/11, new models were developed and continue to improve, providing effective pricing
of terrorism risk. Likewise, the COVID-19 experience has identified a vast amount of business
opportunities for pandemic risk modeling and pricing.

5 | INTERTEMPORAL RISK-SHARING AND THE DESIGN
OF THE PANDEMIC INSURANCE MARKET

Our findings demonstrate that high accumulation risk of pandemic losses and the lack of
geographical diversification result in high insurance prices that will reduce the affordability of
these contracts. On the basis of the recent experience of the insurance sector with COVID-19,
OECD (2020) reports that, indeed, insurers are reducing or eliminating any potential coverage
for pandemic risk in property damage and business interruption policies. This brings the
question about the design of a risk-sharing mechanism that combines the expertise and the
capacity of the insurance industry with those of the financial market and the public sector.
Several such proposals are being discussed between the regulators and the insurance industry,
for example, EIOPA (2020), The Geneva Association (2021), Klein and Weston (2020), and
Kraut and de Kuiper (2021). Ultimately, many proposals involve enhancing the cross-sectional
risk-sharing by insurers with an intertemporal risk-sharing mechanism either financed or
guaranteed by the government. In this section, we analyze the scope for intertemporal risk-
sharing to reduce the accumulation risk in the context of a hypothetical insurance contract.
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Then we discuss some practical implementation challenges of a government-sponsored risk-
sharing program.

We consider an intertemporal risk-sharing mechanism that facilitates pandemic risk
pooling for 50 years. All insurers participate in the pool during the 50 years, and a long-term
intermediary like a benevolent government can facilitate risk sharing. The setting is analogous
to an Arrow-Debreu complete market environment and estimates the first-best potential of risk
sharing. We come back to the most obvious challenges of arranging such scheme in practice
later in this section.

The intermediary accumulates a fund by charging the reinsurance premiums to partici-
pating insurers. In the years of a pandemic, the intermediary disburses the fund. In case the
accumulated fund is not sufficient to pay the reinsured losses, as would be the case if the next
pandemic occurs in the early years of the scheme existence, the intermediary can borrow from
the financial market to replenish the deficit. Insurers’ participation in the scheme is
compulsory.

The risk-sharing mechanism effectively enables to replace the loss distribution of the
hypothetical insurance contract L ; in year ¢t with an average loss distribution across 50 years,

1 «s0 =

LAZS_O t=1

te

Given the calibration of the pandemic insurance contract loss distribution in the cross-
section L, reported in Section 4.3.1 and the frequency of 1-in-100 years, we simulate the loss
distribution L 4 for an insurance contract with a $2000 monthly payment. We apply the fol-
lowing procedure: First, we simulate a compounded loss distribution which is a mix of the 0.01
frequency and the log-normal severity distribution with parameters ¢ = 29.95 and o = 1.59. We
simulate 50 values from this compounded distribution, corresponding to the 50 years stream of
realized losses under the scheme. Next, we calculate an average of these realizations. By
repeating the procedure 10,000 times, we obtain the distribution of the average loss and gen-
erate the distribution of the average loss. We obtain the 1% expected shortfall by calculating the
mean of the lowest 100 realizations.

Given the 1% expected shortfall of the average loss distribution for the insurance industry,
we obtain the company-level expected shortfall for an insurer with 1%, 2%, and 3% market
shares as in our baseline analysis. The estimated insurer-level expected shortfalls for the range
of market shares and the respective estimated markups are reported in Table 8. These results
show that the estimated expected shortfall under the risk-sharing mechanism for an insurer
with a 1% market share decreases from $46 billion to $23 billion. These estimates suggest that
there is a significant reduction in the expected shortfall under the scheme. For comparison, an
insurer with a 1% market share in NatCat coverage in Mid-Atlantic region faces the expected
shortfall of 170 million USD (Table 1). However, the decrease in the expected shortfall trans-
lates only in a moderate reduction in price markup. This is the case because the elasticity of the
markup to the expected shortfall estimated for the catastrophe risk market is only 0.1451.

Though our estimation results suggest potential benefits of the intertemporal risk-sharing,
the practical implementation has several challenges. The first one is market incompleteness,
arising from the voluntary entry and exit of insurance companies in the pandemic insurance
market (Allen & Gale, 1997; Gordon & Varian, 1988). That is, the historic experience of the
scheme with the occurrence of the pandemic can influence the insurers' entry and exit
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TABLE 8 Risk-sharing mechanism

Market share (%) ES, ¢, (billion $) Est Markup (1 + A1) Quantile (%)
3 69.3 4.68 21.58
2 46.2 4.41 22.75
1 23.1 3.99 2491

Note: This table presents the expected shortfall at 1% and estimated markup for firms covering a market share of 1%, 2%, and 3%
of our hypothetical pandemic unemployment insurance market, under our proposed risk-sharing mechanism. The markup has
been estimated assuming the average rating in our data set, 2.97133 (A). The last column places the estimated markup in the
distribution of markups in our sample and shows what percentage of markups in our sample are higher than the estimated
markup for pandemic unemployment insurance, under this risk-sharing mechanism.

incentives to the pandemic insurance market, even if insurers selling pandemic coverage are
mandated to participate in the scheme.

Another issue of the scheme design is that it needs to preserve the insurers' incentives to
price risk and to innovate suitable insurance products. The risk-sharing scheme has to establish
a fine balance between reducing the exposure to the accumulation risk while retaining enough
“skin in the game” for the private insurance market. Insurers’ premiums to the scheme and the
coverage should be risk-based. The scheme needs to recognize the trade-offs arising from
asymmetric information and moral hazard in the insurance market in case of risk transfer from
insurers to the scheme as a reinsurer (Doherty & Smetters, 2005). Furthermore, the colla-
boration of the public and the private sector creates a mix of stakeholders with divergent views
and objectives (Jarzabkowski et al., 2018), including political pressure leading to short-termism.

Besides the challenges of designing an incentive-compatible long-term risk-sharing scheme,
such a scheme can affect public health authorities and government preparedness to the pan-
demic as well as the actions during the next outbreak. Richter and Wilson (2020) suggest that if
the economic costs of the containment measures are borne by the private insurance industry,
the government has less incentives to remediate during the outbreak and is more willing to
extend the containment measures. Furthermore, having the scheme in place can reduce gov-
ernment incentives to invest in public health system preparedness in terms of testing capacities,
vaccine developments, and so forth.

In summary, our empirical analysis shows that an intertemporal risk-sharing scheme can
add risk-bearing capacity for pandemic insurance. In the context of a hypothetical insurance
contract, the scheme reduces the 1% expected shortfall by 50%. Complemented by the capacity
of the external financial market, the scheme can provide a significant cushion to insured small
businesses and their employees. However, the assessment provides a first-best estimate of risk-
sharing capacity, and the scheme design is crucial to achieve it.

6 | CONCLUDING REMARKS

Our analysis of the scope of the private insurance market for pandemic risks shows that it is
unlikely that the insurance industry alone will be able to provide sufficient coverage for
business interruption losses like those occurring during the COVID-19 crisis. Compared with
the NatCat insurance market, we show that the markup of a hypothetical insurance contract is
in the top 20% of the realized price markups of NatCat insurance, and the expected shortfall of
the loss distribution is about 100 times higher. We also explore the capacity of an intertemporal
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risk-sharing scheme to reduce the accumulation risk of the pandemic loss distribution and
show that a scheme that enables risk-sharing over 50 years reduces the expected shortfall
by 50%.

The experience of the COVID-19 crisis reveals the need for insurance products that link the
pandemic characteristics to economic indicators like business revenue decreases and reduction
in consumer spending. Our analysis is a first step in this direction, and it would not be possible
without the high-frequency detailed OIT data. Our and other recent studies point out that a
new generation of pandemic risk models can benefit substantially from big data analytic tools.
The current digital revolution provides great opportunities for innovation.

Several important questions are left for future research. Our assessment of the scope for
intertemporal risk-sharing takes the first-best approach. The design of the risk-sharing scheme
that involves government and financial market investors needs to carefully consider the role of
risk-based pricing and moral hazard. Appropriate risk mitigation incentives and state-of-the-art
risk-based pricing are important components of the scheme. Ultimately, the scheme must find
an optimal trade-off between enhancing the risk-bearing capacity and limiting the costs in-
curred by the taxpayers.
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APPENDIX A

In its first part Appendix A provides insights into the factors for pricing pandemic risks by applying
the three-moments CAPM (Kraus & Litzenberger, 1976). On the basis of expected utility, the second
part of Appendix A focuses on the demand for pandemic risk insurance, and determines the con-
ditions under which a market for pandemic risk insurance is possible.

A.1 | Reservation price of the supply side

For shareholders of an insurance company (or any other investor who provides a similar risk
coverage, for example, via Alternative Risk Transfer [ART] instruments), we assume that the
assumptions of the three-moments CAPM hold true, especially that the capital market is in
equilibrium and investors include the third moments of cash-flows in their portfolio choice. If
the asset pricing formula derived for capital market instruments for arbitrage reasons also
applies to insurance contracts, then, with points in time =0, 1, the insurance premium F,; of
policyholder j for (pandemic) claim payments S;; is determined by'*

1
1+

b= [E(Sl,j) — bRy, — bzPo,j}’le]- (A1)

Thereby, b; denotes the market risk premium and b, the market skewness premium given by the
relation p, — rr = by + b, where r; stands for the risk-free rate of return and u,,; for the expected
rate of return of the market portfolio. Hence, the insurance premium in Equation (A1) is given by a
risk-free discounted certainty equivalent that results from adjusting the expected claims payments by
two terms that reflect systematic risk (551J-) and systematic skewness (VSU)' Before discussing the
adjustment terms in detail, let us have a closer look at the market portfolio in the presence of
pandemic risks.

Pandemic risks affect the value of the market portfolio. If we define V{ (i =1, ..., N) as the future firm
value of firm i, but without including pandemic losses, and Sli as the pandemic loss realizing in t =1,
then the value of the stochastic market portfolio Wi™ can be written as

N
wM=3 vi-si=wM - sM, (A2)
i=1

WIM* is therefore the future value of the market portfolio without pandemic loss, and S} is the
aggregate pandemic losses in the market. The rate of return of the market portfolio is therefore
given by

wM WM — M
M=o — 1= 2L A3
Mg wM (A3)

WM is the present value of the market portfolio. We define the rate of return of the market portfolio

without pandemic losses as ryp* = L;jM — 1, and a “pandemic loss rate” Rg as the ratio between the

0

®Equation (A1) is a rearrangement of eq. (3) in Kraus and Litzenberger (1976), p. 1088, transferring their asset pricing
formula (in rate-of-return notation) to the insurance context.
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aggregate pandemic losses and the value of the market portfolio (Rs = SM/W)"). The pandemic loss
rate tells us which percentage of the market portfolio value gets lost through a pandemic. Hence, the
rate of return of the market portfolio can be rewritten as

M =TIms— Rs. (A4)

Let us discuss the risk adjustments in pricing formula (A1). The first adjustment term represents
the market risk premium multiplied by the beta risk of the (pandemic) risk, and represents the
traditional two-moments-CAPM markup for systematic risk. By using ny from Equation (A4), and
with oy = var(ry), the systematic risk is given by

1J
cov[ =2 —1,r *—R)
BB, =P, (Bu' M S _ coV(Si r'wr)  COV(Su Rs) (A5)
R Ot Oy o

The second adjustment term in Equation (A1) represents an adjustment for systematic
skewness, that is, the market skewness premium multiplied by the coskewness of the insured
risk with the market portfolio. The term F,;yg  can be rewritten as

Sy N
~ cov( y 1, (v — ) ) _ cov(Syy, (v — ih)?)
Foj¥s,; = o, md - my (A6)
i i A6
cov(Syj, (rv* — Rs — (E(hwix) — E(Rg)))?)

My

with mg; = E[(ny — E(rw))*].
Premium formula (A1) can now be written as

cov(Syi, 'm* cov(S;i, R
By = E[Su]_bl[ (Siywr)  COV(Syy s)]

1+7t oW o

(A7)
cov((S1,: (rur = Rs = B(rae) = E(Rs))))

My

— b,

With a positive market price of systematic risk b, the sign of the premium charge regarding the

sign of the first risk adjustment term is determined by the sign of the covariance terms.
The term —COV(S”’ )

o

above average in times of below-average capital market returns, this leads to a negative covariance
and gives rise for a systematic risk premium charge.

reflects the traditional CAPM beta factor.'” If the (pandemic) loss tends to be

Compare Fairley (1979).
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S1js R . . . . L.
The term M reflects the cumulative risk coming along with pandemic risks. If the

o
(pandemic) loss to be insured tends to be above average when the pandemic loss rate is also
above average, that is, when the aggregate (pandemic) losses in relation to the present value of
the market portfolio are above average, then a cumulative-risk-markup is the consequence.
Investors of the insurance company require a compensation for such cumulative risk that

worsens their financial situations in pandemic-related “bad times”.

In the second risk adjustment term, as Kraus and Litzenberger show, b, has the opposite sign as
the skewness parameter of the market portfolio rate of return mg.”” If S, j and Y
(Y = (rw») — Rs — (E(rauw)) — E(Rs)))?) are uncorrelated (negatively correlated), the second risk
adjustment factor is zero (negative). A positive skewness markup results if S;; and Y are positively
correlated with cov(Sq ), (rms) — Rs — (E(roms) — E(Rs)))?) > 0. The latter case occurs if
above-average loss payments prevail in situations of large deviations of the market portfolio return
from its mean—which may be due to high pandemic loss rates Rg in otherwise normal capital market
scenarios. The more extreme the losses are in situations of extreme capital market returns, the higher
becomes the markup on the insurance premium. Thus, high cumulative risks, as reflected by a high
Rs, can exacerbate the skewness markup through their effect in the market portfolio.

A.2 | Demand for pandemic risk insurance

Insurance customers are assumed to be risk-averse and not able to replicate their future cash-flows
resulting from pandemic losses via assets traded on a frictionless and continuous capital market.
Otherwise, there would be no economic reason for the existence of insurance. To determine the
willingness to pay of an insurance customer, we refer to a representative customer focusing on her
wealth position W; (we omit index j for simplicity reasons), which results from her stochastic asset
endowment A; minus a stochastic (pandemic) loss S;, if she purchases no insurance

In case she insures the pandemic risk (for the sake of simplicity only through full coverage)
her final wealth position is given by

Wi=A — Pogross' (A9)

Hereby, P§* = (1 + A)B,, with B, given by Equation (A7). The markup A > 0 refers to the
insurer's costs arising from financial market and regulatory frictions. We consider the following
customer's preference function ®(W) that is in line with maximizing expected utility, given an
exponential utility function, and considering the first three moments of W;*’

20Compare Kraus and Litzenberger (1976), p. 1088. b, can be interpreted as market price of skewness, and reflects the
appreciation of a positive skewness of returns by the capital market participants. As to Equation (A7), taking the positive sign

of (_y%] into account, a positive skewness contribution of the cash-flow S, ; to the rate-of-return skewness of the market
M

portfolio, expressed by a positive cov(Syj, (nn — E (rm))?), therefore increases the cash-flow's equilibrium price.

*ITo stay in line with the desirable properties of a utility function as specified by Arrow (1970) we choose a utility

function that displays the same rates of substitution as the Taylor approximation of the negative exponential utility
du— %ada2 1

function U = —e~", that is, adu — %azdcr2 + %a3dy =02 —— = —ca
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a a?
‘1>(W1)=E("V1)—E'Cféz1 + —

o‘f,l stands for the variance of the wealth position of the customer var(W;), and ¥, for its

skewness. Moreover, the risk aversion parameter is a > 0.

For the insurance policy to be attractive, the preference value from buying the policy should
be higher than the preference value if no insurance is purchased.

With ofh = var(W;) and o*fl = var(S;) we obtain in the case without insurance the expected

wealth, its variance and skewness

E(WY°) = E(A) — E(S), (A11)

o2

wlo = O'/Zsl + crfl — 2cov(4y, Sy), (A12)

E((A — 81)%) = 3E(4 — S1)0; s, — (E(A4 — S))?

'}/Ww/o =
1

3/2 Al3
[af,l + 0 — 2cov(4, Sl)] (A13)

By setting 7y = 0 and substituting the sum of the risk adjustment terms in Equation (A7) by
Ragj, the first two central moments and the skewness of the wealth distribution with full
coverage are given by

E(W™) = E(4) — (1 + A)(E[S1] + Ragy), (A14)

—_ -2
O'é/lwith - UAI’ (AlS)

E(A?®) — 3E(A))o; — (E(A))?

[0, 7

yW1Wim = (A16)

Purchasing insurance is advantageous if oWV — &(W,Y/°) > 0. In formal terms, we have

. 2
PW™) = @(WL) = —AE[S)] — (1 + DRugy + (03, = 200V, $) + Ty = 7y0) > 0.

(A17)
APPENDIX B
TABLE B1 List of publicly traded insurance groups
P&C Insurance Group

1 Bank of America Corporation (SNL P&C Group)

2 First Acceptance (SNL P&C Group)

3 Allstate Corp (SNL P&C Group)

4 The Cincinnati Insurance Cos. (SNL P&C Group)

5 National Security Group Inc. (SNL P&C Group)

(Continues)
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TABLE B1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

(Continued)
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P&C Insurance Group

Kemper (SNL P&C Group)

AIG (SNL P&C Group)

W. R. Berkley Corp. (SNL P&C Group)
Horace Mann (SNL P&C Group)

Mercury Insurance (SNL P&C Group)
Progressive (SNL P&C Group)

United Fire Group Inc. (SNL P&C Group)
0Old Republic Insurance (SNL P&C Group)
Hallmark (SNL P&C Group)

Chubb (SNL P&C Group)

American National (SNL P&C Group)
Great American Insurance (SNL P&C Group)
Selective (SNL P&C Group)

Berkshire Hathaway Inc. (SNL P&C Group)
The Hanover Insurance Group (SNL P&C Group)
The Hartford (SNL P&C Group)

General Electric Co. (SNL P&C Group)
AXA SA (SNL P&C Group)

QBE (SNL P&C Group)

Fairfax Financial (SNL P&C Group)
AMERCO (SNL P&C Group)

Universal Insurance Holdings Inc. (SNL P&C Group)
Zurich (SNL P&C Group)

Markel (SNL P&C Group)

MetLife (SNL P&C Group)

Travelers (SNL P&C Group)

Safety Insurance (SNL P&C Group)

AXIS (SNL P&C Group)

MAPFRE (SNL P&C Group)

Hiscox Ltd. (SNL P&C Group)

Global Indemnity (SNL P&C Group)
Assurant (SNL P&C Group)

Tokio Marine (SNL P&C Group)

Beazley Plc (SNL P&C Group)

Allianz (SNL P&C Group)

Houston International Insurance (SNL P&C Group)
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TABLE B2 Estimated market betas for P&C insurers yearly

P&C Insurer
AIG

Allianz
Allstate Corp
AMERCO

American
National

Assurant
AXA SA
AXIS

Bank of America
Corporation

Beazley Plc

Berkshire
Hathaway Inc.

Biglari
Holdings Inc.

Chubb
Fairfax Financial
First Acceptance

General
Electric Co.

Global Indemnity

Great American
Insurance

Hallmark
Hiscox Ltd.
Horace Mann

Houston
International
Insurance

Kemper
MAPFRE
Markel

Mercury
Insurance

MetLife

2000

0.796
0.258
0.901
0.419

0.381

0.352

1.087

0.548

0.112

1.009
0.365
0.030
1.027

0.476

0.181
—0.124
0.997
0.759

0.472
0.153
0.555
0.505

2001

0.667
0.598
0.497
0.433

0.338

0.680

1.000

0.338

0.676

0.940
0.268
0.258
1.542

0.545

—0.232
0.687
0.720
1.037

0.598
0.037
0.558
0.300

0.719

2002

1.215
1.269
0.563
1.046

0.236

1.065

0.949

0.291

0.815

0.978
0.276
0.053
1.357

0.916

0.277
—0.058
0.763
0.685

0.674
0.202
0.354
0.537

0.883

2003

1.398
1.506
0.678
0.090

0.356

1.146

0.772

—0.120

0.265

0.930

1.200
0.960
0.244
1.108

0.775

0.511
—0.195
0.853
0.247

0.923
—0.031
0.378
0.567

0.995

2004

1.144
0.786
0.799
1.218

0.170

0.410
0.749
0.606

0.823

—0.051

0.304

1.236

1.000
0.530
1.056
1.089

0.232
0.769

—-0.710
0.207
0.933
1.115

1.113
0.574
0.426
0.666

0.996

2005

1.002
0.434
0.796
1.458

0.107

0.713
0.460
0.705

0.840

—0.078

0.226

1.588

1.082
0.382
1.099
0.890

0.240
0.764

0.030
—0.040
1.378
0.138

0.941
0.225
0.387
0.790

1.085

2006

0.860
1.122
0.715
2.312

0.178

0.666
1.159
0.714

0.845

0.288

0.285

1.392

1.074
0.862
1.534
0.764

0.561
0.873

—-0.716
0.844
1.420
1.164

0.969
0.714
0.448
0.859

1.079

2007
1.142
0.654
0.902
1.640

0.447

0.874
0.843
0.527

1.108

0.769

0.267

0.763

1.051
0.423
1.219

0.911

1.000
0.984

0.949
0.606
1.374

—0.233

1.081
0.517
0.503
0.731

1.309

2008
2.281
0.640
1.301
0.957

1.510

1.277
0.842
0.992

1.871

0.457

0.555

0.961

1.101
0.119
1.337
1.053

0.897
1.531

0.495
0.207
1.686
0.323

1.277
0.553
1.185
1.006

1.600
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2009 2010

1.945 1.531
1.132  0.977
1.778 1.141
1.601 1.463
1.680 1.217
1.714 1.018
1.375 1.711
1.098 0.777
3.140 1.576
0.444  0.532
0.812 0.817
1.449  0.925
1.122  0.762
0.557  0.485
1.741  0.840
1475 1.246
1.839 1.683
1.364 1.039
0.766  1.219
0.543  0.352
1.792  1.425
0.244  0.928
1.721  1.455
0.879 1.379
1.275 0.745
1.042 0.713
2.784 1.525

(Continues)
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TABLE B2 (Continued)

P&C Insurer 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

National Security 0.244 0.085 —0.100 0.132 0.159 —0.112 0.206 0.058 0.391 0.129 —0.111
Group Inc.

Old Republic 0.608 0.529 0.719 0.885 0.682 0.883 0.767 1.003 1.493 1.377 1.077
Insurance

Progressive 1.151 0.605 0.737 0.863 0.863 0.963 0.692 0.751 1.103 1.278 1.018

QBE 0.077 0.710 —0.083 —0.140 0.210 —0.061 0.305 0.355 0.257 0.640 0.571

Safety Insurance 0.528 1.151 1.409 1.012 1.109 0.854 0.989 0.790

Selective 0.199 0.873 0.697 0.827 1.264 1469 1.282 1.549 1.254 1464 1.050

The Cincinnati 0.800 0.513 0.750 0.909 0.773 0936 0.720 1.124 1.357 1.217 1.001
Insurance Cos.

The Hanover 0.591 0.689 0.947 1.481 1.570 1.072 0.948 0.880 0.974 0.861 0.676
Insurance
Group

The Hartford 1.171 0.737 1.020 1.302 1.115 1.205 1.096 1.247 1.638 3.438 1.801

Tokio Marine —0.011 0.404 —0.181 0.358 —0.096 0.008 0.016 —0.071

Travelers 0.788 0.714 0926 1.013 1.161 0973 1.034 1.039 1.266 0.984 0.711

United Fire 0.257 0.238 0.515 0.792 0.841 0931 0.845 1.277 1.377 1.562 1.260
Group Inc.

Universal —0.434 0.681 —1.457 0.496 0.600 —0.344 1.223 0.953 0.712 0.654 0.655
Insurance

Holdings Inc.

Note: This table presents estimates of market beta for each insurer in our sample, yearly. Betas have been estimated based on
daily returns over 1year, with a minimum of 200 observations per insurer, per year. The estimation is based on an OLS
regression controlling for interest rate; we use the US 10-year constant maturity note yield to control for interest rate and the
S&P 500 Index as a proxy for the market portfolio. The estimates for market beta are found to be statistically significant.





