Búsqueda

A Relational data matching model for enhancing individual loss experience: an example from crop insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200004899</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911211300.0</controlfield>
    <controlfield tag="008">200217e20191202usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">eng</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">329</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20150014924</subfield>
      <subfield code="a">Porth, Lysa</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Relational data matching model for enhancing individual loss experience: an example from crop insurance</subfield>
      <subfield code="c">Lysa Porth, Ken Seng Tan and Wenjun Zhu</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The focus of this article is on predictive analytics regarding data scarcity and credibility, which are major difficulties facing the agricultural insurance sector, often due to limited loss experience data for those infrequent but extreme weather events. A new relational data matching model is presented to predict individual farmer yields in the absence of farm-level data. The relational model defines a similarity measure based on an Euclidean distance metric that considers weather information, farm size, county size, and the coefficient of variation of yield to search for the most similar region in a different country to borrow individual loss experience data that are otherwise not available. Detailed farm-level and county-level corn yield data in Canada and the United States are used to empirically evaluate the proposed relational model. Compared to the benchmark model, the empirical results confirm the efficiency of the proposed model in that it yields lower prediction error with smaller variation, and it recovers the actual premium rate more accurately. The proposed relational model provides a new approach for insurers, reinsurers, and governments to enhance individual loss experience, helping to overcome issues (such as data scarcity, credibility, and aggregation bias) that present substantial challenges in risk modeling, pricing, and developing new insurance programs, particularly for developing countries.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578213</subfield>
      <subfield code="a">Seguros agrarios</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080575328</subfield>
      <subfield code="a">Cultivo agrícola</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080548575</subfield>
      <subfield code="a">Pérdidas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578848</subfield>
      <subfield code="a">Análisis de datos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080585266</subfield>
      <subfield code="a">Factores de riesgo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080563790</subfield>
      <subfield code="a">Predicciones</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="651" ind1=" " ind2="1">
      <subfield code="0">MAPA20080638337</subfield>
      <subfield code="a">Estados Unidos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080653491</subfield>
      <subfield code="a">Seng Tan, Keng</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170005773</subfield>
      <subfield code="a">Zhu, Wenjun</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">02/12/2019 Tomo 23 Número 4 - 2019 , p. 551- 572</subfield>
    </datafield>
  </record>
</collection>