Sección: Documentos electrónicos Título: Comparación de tarificación de seguro de auto por GLM y redes neurales / Ying LiAutor: Li, YingPublicación: Madrid : Universidad Carlos III de Madrid, 2022Descripción física: 96 p.Notas: Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutores: José Miguel Rodríguez-Pardo del Castillo, Jesús Ramón Simón del Potro Curso 2021-2022Sumario: En la industria tradicional de seguro, la manera más utilizada para hacer tarificación es el modelo GLM (General Lineal Model), que es muy interpretable pero menos flexible. Con el desarrollo de FINTECH, el sector de los seguros ha entrado en la era del machine learning. Machine learning tiene má¡s potencia en predecir, pero menos interpretable.También, en el Área de machine learning, algunos modelos carecen de apoyo teórico, por lo que tenemos que lidiar con algunos problemas de caja negra. Por eso, la idea es aprovechar la potencia de predecir del modelo Redes Neurales y la interpretad del modelo clásco GLM, y comparar las ventajas y desventajas entre síMateria / lugar / evento: Seguro de automóvilesTarificaciónModelos GLMRedes neuronales artificialesEstudios comparativosModelos actuarialesAlgoritmosMachine learningTrabajos de investigaciónOtros autores: Rodríguez-Pardo del Castillo, José Miguel Simón del Potro, Jesús Ramón Universidad Carlos III de Madrid Serie secundaria: Trabajos Fin de MasterOtras clasificaciones: 6Derechos: In Copyright (InC)