Búsqueda

Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data

Acceso al documento/Access the document
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20240013554
003  MAP
005  20240830124218.0
008  240830e20240515bel|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20230005262‎$a‎Duval, Francis
24510‎$a‎Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data‎$c‎Francis Duval, Jean-Philippe Boucher, Mathieu Pigeon
520  ‎$a‎We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the combinedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part
650 4‎$0‎MAPA20080627904‎$a‎Ciencias Actuariales y Financieras
650 4‎$0‎MAPA20080603779‎$a‎Seguro de automóviles
650 4‎$0‎MAPA20080556495‎$a‎Siniestros
650 4‎$0‎MAPA20080586294‎$a‎Mercado de seguros
7001 ‎$0‎MAPA20080297572‎$a‎Boucher, Jean-Philippe
7001 ‎$0‎MAPA20130016573‎$a‎Pigeon, Mathieu
7730 ‎$w‎MAP20077000420‎$g‎15/05/2024 Volumen 54 Número 2 - mayo 2024 , p.239-262‎$x‎0515-0361‎$t‎Astin bulletin‎$d‎Belgium : ASTIN and AFIR Sections of the International Actuarial Association
856  ‎$u‎https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/telematics-combined-actuarial-neural-networks-for-crosssectional-and-longitudinal-claim-count-data/B6C01BF508F64D4C7A804A628F3D03E0