Búsqueda

An Adaptive premium policy with a Bayesian motivation in the classical risk model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20120041325</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20121009132941.0</controlfield>
    <controlfield tag="008">121001e20120903esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110031114</subfield>
      <subfield code="a">Landriault, D.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="3">
      <subfield code="a">An Adaptive premium policy with a Bayesian motivation in the classical risk model</subfield>
      <subfield code="c">D. Landriault, C. Lemieux, G.E. Willmot</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we consider an extension of the classical risk model in which the premium rate policy is adaptive to claim experience. We assume that the premium rate is reviewed each time the surplus reaches a new descending ladder height. A choice between a finite number m of rates is then made depending on the time elapsed between successive ladder heights. We derive explicit expressions for the probability of ruin in this model, assuming claim sizes have a mixed Erlang distribution. We then motivate further the idea behind this adaptive premium rate policy by using a mixed Poisson process for the claim arrival, and propose a method to fix the parameters of the policy in this setting. Finally, we discuss other applications of this method.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080581886</subfield>
      <subfield code="a">Primas de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080588953</subfield>
      <subfield code="a">Análisis de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080586348</subfield>
      <subfield code="a">Métodos de cálculo</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20100065242</subfield>
      <subfield code="a">Teorema de Bayes</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080591953</subfield>
      <subfield code="a">Métodos actuariales</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20120023550</subfield>
      <subfield code="a">Lemieux, C.</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100022399</subfield>
      <subfield code="a">Willmot, G.E.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">03/09/2012 Volumen 51 Número 2  - septiembre 2012 , p. 370-378</subfield>
    </datafield>
  </record>
</collection>