Búsqueda

The Tail stein's identity with applications to risk measures

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170004646</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170214105245.0</controlfield>
    <controlfield tag="008">170214e20161230usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20110013387</subfield>
      <subfield code="a">Landsman, Zinoviy</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="4">
      <subfield code="a">The Tail stein's identity with applications to risk measures</subfield>
      <subfield code="c">Zinoviy Landsman, Emiliano A. Valdez</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article, we examine a generalized version of an identity made famous by Stein, who constructed the so-called Stein's Lemma in the special case of a normal distribution. Other works followed to extend the lemma to the larger class of elliptical distributions. The lemma has had many applications in statistics, finance, insurance, and actuarial science. In an attempt to broaden the application of this generalized identity, we consider the version in the case where we investigate only the tail portion of the distribution of a random variable. Understanding the tails of a distribution is very important in actuarial science and insurance. Our article therefore introduces the concept of the "tail Stein¿s identity" to the case of any random variable defined on an appropriate probability space with a Lebesgue density function satisfying certain regularity conditions. We also examine this "tail Stein¿s identity" to the class of discrete distributions. This extended identity allows us to develop recursive formulas for generating tail conditional moments. As examples and illustrations, we consider several classes of distributions including the exponential family, and we apply this result to demonstrate how to generate tail conditional moments. This holds a large promise for applications in risk management.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080549497</subfield>
      <subfield code="a">Actuarios</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080625535</subfield>
      <subfield code="a">Distribuciones de probabilidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080621285</subfield>
      <subfield code="a">Distribuciones estadísticas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080648428</subfield>
      <subfield code="a">Valdez, Emiliano A.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">30/12/2016 Tomo 20 Número 4 - 2016 , p. 313-326</subfield>
    </datafield>
  </record>
</collection>