Pesquisa de referências

A Parameterized approach to modeling and forecasting mortality

Recurso electrónico / electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20090091634
003  MAP
005  20091022125409.0
008  091019e20090227esp|| p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20090035966‎$a‎Hatzopoulos, P.
24512‎$a‎A Parameterized approach to modeling and forecasting mortality‎$c‎P. Hatzopoulos, S. Haberman
520  ‎$a‎A new method is proposed of constructing mortality forecasts. This parameterized approach utilizes Generalized Linear Models (GLMs), based on heteroscedastic Poisson (non-additive) error structures, and using an orthonormal polynomial design matrix. Principal Component (PC) analysis is then applied to the cross-sectional fitted parameters. The produced model can be viewed either as a one-factor parameterized model where the time series are the fitted parameters, or as a principal component model, namely a log-bilinear hierarchical statistical association model of Goodman [Goodman, L.A., 1991. Measures, models, and graphical displays in the analysis of cross-classified data. J. Amer. Statist. Assoc. 86(416), 10851111] or equivalently as a generalized LeeCarter model with p interaction terms. Mortality forecasts are obtained by applying dynamic linear regression models to the PCs. Two applications are presented: Sweden (17512006) and Greece (19572006).Article O
650 1‎$0‎MAPA20080555306‎$a‎Mortalidad
650 1‎$0‎MAPA20090033023‎$a‎Estadística matemática
650 1‎$0‎MAPA20080549923‎$a‎Bootstrap
650 1‎$0‎MAPA20080580377‎$a‎Esperanza de vida
650 1‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
7001 ‎$0‎MAPA20090035973‎$a‎Haberman, S.
7730 ‎$w‎MAP20077100574‎$t‎Insurance : mathematics and economics‎$d‎Oxford : Elsevier, 1990-‎$x‎0167-6687‎$g‎27/02/2009 Tomo 44 Número 1 - 2009, p. 103-123