Pesquisa de referências

Tha Valuation of guaranteed lifelong withdrawal benefit options in variable annuity contracts and the impact of mortality risk

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20110036164</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20110601115407.0</controlfield>
    <controlfield tag="008">110524e20110103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">1</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20110016906</subfield>
      <subfield code="a">Piscopo, Gabriella</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Tha Valuation of guaranteed lifelong withdrawal benefit options in variable annuity contracts and the impact of mortality risk</subfield>
      <subfield code="c">Gabriella Piscopo, Steven Haberman</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In light of the growing importance of the variable annuities market, in this paper authors introduce a theoretical model for the pricing and valuation of guaranteed lifelong withdrawal benefit (GLWB) options embedded in variable annuity products. As the name suggests, this option offers a lifelong withdrawal guarantee, therefore, there is no limit on the total amount htat is withdrawn over the term of the policy vecause if the account value becomes zero while the insured is still alive, he or she continues to receive the guaranteed amount annually until death</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080588953</subfield>
      <subfield code="a">Análisis de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080555306</subfield>
      <subfield code="a">Mortalidad</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="1">
      <subfield code="0">MAPA20080555016</subfield>
      <subfield code="a">Longevidad</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080165116</subfield>
      <subfield code="a">Haberman, Steven</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">03/01/2011 Tomo 15 Número 1  - 2011 </subfield>
    </datafield>
  </record>
</collection>