Reducing risk by merging counter-monotonic risks
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Reducing risk by merging counter-monotonic risks</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080650322">
<namePart>Chun Cheung, Ka</namePart>
<nameIdentifier>MAPA20080650322</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2014</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">In this article, we show that some important implications concerning comonotonic couples and corresponding convex order relations for their sums cannot be translated to counter-monotonicity in general. In a financial context, it amounts to saying that merging counter-monotonic positions does not necessarily reduce the overall level of risk. We propose a simple necessary and sufficient condition for such a merge to be effective. Natural interpretations and various characterizations of this condition are given. As applications, we develop cancelation laws for convex order and identify desirable structural properties of insurance indemnities that make an insurance contract universally marketable, in the sense that it is appealing to both the policyholder and the insurer.</abstract>
<note type="statement of responsibility">Ka Chun Cheung...[et.al]</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080604394">
<topic>Valoración de riesgos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080598631">
<topic>Reducción de riesgos</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Insurance : mathematics and economics</title>
</titleInfo>
<originInfo>
<publisher>Oxford : Elsevier, 1990-</publisher>
</originInfo>
<identifier type="issn">0167-6687</identifier>
<identifier type="local">MAP20077100574</identifier>
<part>
<text>13/01/2014 Volumen 54 Número 1 - enero 2014 , p. 58-65</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">140220</recordCreationDate>
<recordChangeDate encoding="iso8601">20140327100545.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20140006724</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>