Pesquisa de referências

A Survey of personalized treatment models for pricing strategies in insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20140037124</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20141105140033.0</controlfield>
    <controlfield tag="008">141015e20140901esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140020843</subfield>
      <subfield code="a">Guelman, Leo</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Survey of personalized treatment models for pricing strategies in insurance</subfield>
      <subfield code="c">Leo Guelman, Montserrat Guillén,  Ana M. Pérez-Marín</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We consider a model for price calculations based on three components: a fair premium; price loadings reflecting general expenses and solvency requirements; and profit. The first two components are typically evaluated on a yearly basis, while the third is viewed from a longer perspective. When considering the value of customers over a period of several years, and examining policy renewals and cross-selling in relation to price adjustments, many insurers may prefer to reduce their short-term benefits so as to focus on their most profitable customers and the long-term value. We show how models of personalized treatment learning can be used to select the policy holders that should be targeted in a company¿s marketing strategies. An empirical application of the causal conditional inference tree method illustrates how best to implement a personalized cross-sell marketing campaign in this framework.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592011</subfield>
      <subfield code="a">Modelos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080573935</subfield>
      <subfield code="a">Seguros no vida</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080244637</subfield>
      <subfield code="a">Guillén, Montserrat</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080251772</subfield>
      <subfield code="a">Pérez-Marín, Ana María</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077100574</subfield>
      <subfield code="t">Insurance : mathematics and economics</subfield>
      <subfield code="d">Oxford : Elsevier, 1990-</subfield>
      <subfield code="x">0167-6687</subfield>
      <subfield code="g">01/09/2014 Volumen 58 Número 1 - septiembre 2014 , p. 68-76</subfield>
    </datafield>
  </record>
</collection>