Optimal investment, consumption and proportional reinsurance for an insurer with option type payoff
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20150002242</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20150122171258.0</controlfield>
<controlfield tag="008">150113e20141103esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20130014098</subfield>
<subfield code="a">Peng, Xingchun</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Optimal investment, consumption and proportional reinsurance for an insurer with option type payoff</subfield>
<subfield code="c">Xingchun Peng, Linxiao Wei, Yijun Hu</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This paper is devoted to the study of optimization of investment, consumption and proportional reinsurance for an insurer with option type payoff at the terminal time under the criterion of exponential utility maximization. The surplus process of the insurer and the financial risky asset process are assumed to be diffusion processes driven by Brownian motions which are non-Markovian in general. Very general constraints are imposed on the investment and the proportional reinsurance processes. Based on the martingale optimization principle, we use BSDE and BMO martingale techniques to derive the optimal strategy and the optimal value function. Some interesting particular cases are studied in which the explicit expressions for the optimal strategy are given by using the Malliavin calculus.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">03/11/2014 Volumen 59 Número 1 - noviembre 2014 </subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
</datafield>
</record>
</collection>