A Modified insurance risk process with uncertainty
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20150023810</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20150707153716.0</controlfield>
<controlfield tag="008">150626e20150504esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20150012883</subfield>
<subfield code="a">Yao, Kai</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="2">
<subfield code="a">A Modified insurance risk process with uncertainty</subfield>
<subfield code="c">Kai Yao, Zhongfeng Qin</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">An insurance risk process is traditionally considered by describing the claim process via a renewal reward process and assuming the total premium to be proportional to the time with a constant ratio. It is usually modeled as a stochastic process such as the compound Poisson process, and historical data are collected and employed to estimate the corresponding parameters of probability distributions. However, there exists the case of lack of data such as for a new insurance product. An alternative way is to estimate the parameters based on experts¿ subjective belief and information. Therefore, it is necessary to employ the uncertain process to model the insurance risk process. In this paper, we propose a modified insurance risk process in which both the claim process and the premium process are assumed to be renewal reward processes with uncertain factors. Then we give the inverse uncertainty distribution of the modified process at each time. On this basis, we derive the ruin index which has an explicit expression based on given uncertainty distributions.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">04/05/2015 Volumen 62 - mayo 2015 </subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="y">MÁS INFORMACIÓN</subfield>
<subfield code="u">mailto:centrodocumentacion@fundacionmapfre.org?subject=Consulta%20de%20una%20publicaci%C3%B3n%20&body=Necesito%20m%C3%A1s%20informaci%C3%B3n%20sobre%20este%20documento%3A%20%0A%0A%5Banote%20aqu%C3%AD%20el%20titulo%20completo%20del%20documento%20del%20que%20desea%20informaci%C3%B3n%20y%20nos%20pondremos%20en%20contacto%20con%20usted%5D%20%0A%0AGracias%20%0A</subfield>
</datafield>
</record>
</collection>