Optimal reinsurance revisited - A geometric approach
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Valor |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20150026989 | ||
003 | MAP | ||
005 | 20150911144749.0 | ||
008 | 150805e20100503esp|||p |0|||b|spa d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a6 | ||
100 | 1 | $0MAPA20080650322$aChun Cheung, Ka | |
245 | 1 | 0 | $aOptimal reinsurance revisited - A geometric approach$cKa Chun Cheung |
520 | $aIn this paper, we reexamine the two optimal reinsurance problems studied in Cai et al. (2008), in which the objectives are to find the optimal reinsurance contracts that minimize the value-at-risk (VaR) and the conditional tail expectation (CTE) of the total risk exposure under the expectation premium principle. We provide a simpler and more transparent approach to solve these problems by using intuitive geometric arguments. The usefulness of this approach is further demonstrated by solving the VaR-minimization problem when the expectation premium principle is replaced by Wang's premium principle. | ||
773 | 0 | $wMAP20077000420$tAstin bulletin$dBelgium : ASTIN and AFIR Sections of the International Actuarial Association$x0515-0361$g03/05/2010 Volumen 40 Número 1 - mayo 2010 , p. 221-239 |