Pesquisa de referências

Insurance loss coverage under restricted risk classification : the case of iso-elastic demand

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20160024166</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20160809145738.0</controlfield>
    <controlfield tag="008">160808e20160502usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Insurance loss coverage under restricted risk classification</subfield>
      <subfield code="b">: the case of iso-elastic demand</subfield>
      <subfield code="c">Mingjie Hao... [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper investigates equilibrium in an insurance market where risk classification is restricted. Insurance demand is characterised by an iso-elastic function with a single elasticity parameter. We characterise the equilibrium by three quantities: equilibrium premium; level of adverse selection (in the economist's sense); and loss coverage, defined as the expected population losses compensated by insurance. We consider both equal elasticities for high and low risk-groups, and then different elasticities. In the equal elasticities case, adverse selection is always higher under pooling than under risk-differentiated premiums, while loss coverage first increases and then decreases with demand elasticity. By the way, it is argues that loss coverage represents the efficacy of insurance for the whole population; and therefore that if demand elasticity is sufficiently low, adverse selection is not always a bad thing</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20160009828</subfield>
      <subfield code="a">Hao, Mingjie</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">02/05/2016 Volumen 46 Número 2 - mayo 2016 , p. 265-291</subfield>
    </datafield>
  </record>
</collection>