Pesquisa de referências

Arrow's theorem of the deductible with heterogeneous beliefs

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170014423</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170517163623.0</controlfield>
    <controlfield tag="008">170511e20170301esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170005414</subfield>
      <subfield code="a">Ghossoub, Mario</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Arrow's theorem of the deductible with heterogeneous beliefs</subfield>
      <subfield code="c">Mario Ghossoub</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In Arrow¿s classical problem of demand for insurance indemnity schedules, it is well-known that the optimal insurance indemnification
for an insurance buyeror decision maker (DM)is a deductible contract when the insurer is a risk-neutral Expected-Utility (EU)
maximizer and when the DM is a risk-averse EU maximizer. In Arrow¿s framework, however, both parties share the same probabilistic
beliefs about the realizations of the underlying insurable loss. This article reexamines Arrow¿s problem in a setting where the DM and
the insurer have different subjective beliefs. Under a requirement of compatibility between the insurer¿s and the DM¿s subjective beliefs,
we show the existence and monotonicity of optimal indemnity schedules for the DM. The belief compatibility condition is shown to be a
weakening of the assumption of a monotone likelihood ratio. In the latter case, we show that the optimal indemnity schedule is a variable
deductible schedule, with a state-contingent deductible that depends on the state of the world only through the likelihood ratio. Arrow¿s
classical result is then obtained as a special case.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080607913</subfield>
      <subfield code="a">Probabilidad de impago</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/03/2017 Tomo 21 Número 1 - 2017 , p. 15-35</subfield>
    </datafield>
  </record>
</collection>