Mortality dependence and longevity bond pricing : a dynamic factor copula mortality model with the GAS structure
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Mortality dependence and longevity bond pricing</title>
<subTitle>: a dynamic factor copula mortality model with the GAS structure</subTitle>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2017</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Modeling mortality dependence for multiple populations has significant implications for mortality/longevity risk management. A natural way to assess multivariate dependence is to use copula models. The application of copula models in the multipopulation mortality analysis, however, is still in its infancy. In this article, we present a dynamic multipopulation mortality model based on a two-factor copula and capture the time-varying dependence using the generalized autoregressive score (GAS) framework. Our model is simple and flexible in terms of model specification and is widely applicable to high dimension data. Using the Swiss Re Kortis longevity trend bond as an example, we use our model to estimate the probability distribution of principal reduction and some risk measures such as probability of first loss, conditional expected loss, and expected loss. Due to the similarity in the structure and design of CAT bonds and mortality/ longevity bonds, we borrow CAT bond pricing techniques for mortality/ longevity bond pricing. We find that our pricing model generates par spreads that tre close to the actual spreads of previously issued mortality/ longevity bonds. </abstract>
<note type="statement of responsibility">Hua Chen, Richard D. MacMinn, Tao Sun</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555306">
<topic>Mortalidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20090035034">
<topic>Modelización mediante cópulas</topic>
</subject>
<classification authority="">1</classification>
<relatedItem type="host">
<titleInfo>
<title>The Journal of risk and insurance</title>
</titleInfo>
<originInfo>
<publisher>Nueva York : The American Risk and Insurance Association, 1964-</publisher>
</originInfo>
<identifier type="issn">0022-4367</identifier>
<identifier type="local">MAP20077000727</identifier>
<part>
<text>03/04/2017 Volumen 84 Número S1 - abril 2017 , p. 393-415</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">170518</recordCreationDate>
<recordChangeDate encoding="iso8601">20170602093908.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20170015093</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>