Pesquisa de referências

A Multivariate analysis of intercompany loss triangles

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170019589</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170621144823.0</controlfield>
    <controlfield tag="008">170613e20170605esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100048726</subfield>
      <subfield code="a">Shi, Peng</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="2">
      <subfield code="a">A Multivariate analysis of intercompany loss triangles</subfield>
      <subfield code="c">Peng Shi</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">The prediction of insurance liabilities often requires aggregating experience of loss payment from multiple insurers. The resulting data set of intercompany loss triangles displays a multilevel structure of claim development where a portfolio consists of a group of insurers, each insurer several lines of business, and each line various cohorts of claims. In this article, we propose a Bayesian hierarchical model to analyze intercompany claim triangles. A copula regression is employed to join multiple triangles of each insurer, and a hierarchical structure is specified on major parameters to allow for information pooling across insurers. Numerical analysis is performed for an insurance portfolio of multivariate loss triangles from the National Association of Insurance Commissioners. We show that prediction is improved through borrowing strength within and between insurers based on training and holdout observations.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080618902</subfield>
      <subfield code="a">Análisis de multivariables</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080589837</subfield>
      <subfield code="a">Control de pérdidas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">05/06/2017 Volumen 84 Número 2 - junio 2017 , p. 717-737</subfield>
    </datafield>
  </record>
</collection>