Pesquisa de referências

Value-at-risk bounds with variance constraints

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170028802</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170907113722.0</controlfield>
    <controlfield tag="008">170904e20170904usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090034792</subfield>
      <subfield code="a">Bernard, Carole</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Value-at-risk bounds with variance constraints</subfield>
      <subfield code="c">Carole Bernard, Ludger Rüschendorf, Steven Vanduffel</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">37 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We study bounds on the Value-at-Risk (VaR) of a portfolio when besides the marginal distributions of the components its variance is also known, a situation that is of considerable interest in risk management. We discuss when the bounds are sharp (attainable) and also point out a new connection between the study of VaR bounds and the convex ordering of aggregate risk. This connection leads to the construction of an algorithm, called Extended Rearrangement Algorithm (ERA), that makes it possible to approximate sharp VaR bounds. We test the stability and the quality of the algorithm in several numerical examples. We apply the results to the case of credit risk portfoloio models and verify that adding the variance constraint gives rise to significantly tighter bounds in all situations of interest.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080570958</subfield>
      <subfield code="a">Valores límite</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170011576</subfield>
      <subfield code="a">Rüschendorf, Ludger</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080650094</subfield>
      <subfield code="a">Vanduffel, Steven</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">04/09/2017 Volumen 84 Número 3 - septiembre 2017 , p. 923-959</subfield>
    </datafield>
  </record>
</collection>