Pesquisa de referências

An Economic premium principle under the dual theory of the smooth ambiguity model

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170030478</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170921165807.0</controlfield>
    <controlfield tag="008">170920e20170530bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">212</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170011965</subfield>
      <subfield code="a">Fujii, Yoichiro</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="3">
      <subfield code="a">An Economic premium principle under the dual theory of the smooth ambiguity model</subfield>
      <subfield code="c">Yoichiro Fujii, Hideki Iwaki, Yusuke Osaki</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">15 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This study considers a pure exchange economy with insurance against ambiguous loss. Ambiguity preferences are represented by the dual theory of the smooth ambiguity model fromIwaki and Osaki (2014). The economic premium principle of Bühlmann (1980, 1984) is extended to ambiguity. We also perform some comparative statics and present sufficient conditions under which an increase in ambiguity aversion increases insurance demand and insurance premiums. Contrary to the result in Tsanakas and Christofides (2006), the optimal demand for insurance is not always comonotonic, because our model permits an economy comprising both ambiguity averse and ambiguity loving agents.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080581886</subfield>
      <subfield code="a">Primas de seguros</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080596316</subfield>
      <subfield code="a">Equilibrio económico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080613105</subfield>
      <subfield code="a">Análisis probabilísticos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170012023</subfield>
      <subfield code="a">Iwaki, Hideki</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170012030</subfield>
      <subfield code="a">Osaki, Yusuke</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/09/2017 Volumen 47 Número 3 - septiembre 2017 , p. 787-801</subfield>
    </datafield>
  </record>
</collection>