Pesquisa de referências

Ratemaking of dependent risks

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20170030522</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20170921165919.0</controlfield>
    <controlfield tag="008">170920e20170706bel|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20170011972</subfield>
      <subfield code="a">Andrade e Silva, J.M.</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Ratemaking of dependent risks</subfield>
      <subfield code="c">J. M. Andrade e Silva, M. de Lourdes Centeno</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">20 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We start by describing how, in some cases, we can use variance-related premium principles in ratemaking,when the claim numbers and individual claim amounts are independent. We use quasi-likelihood generalized linear models, under the assumption that the variance function is a power function of the mean of the underlying random variable.We extend this approach to the cases where the claim numbers are correlated. Some alternatives to deal with dependent risks are presented, taking explicitly into account overdispersion. We present regression models covering the bivariate Poisson, the generalized bivariate negative binomial and the bivariate PoissonLaguerre polynomial, which nest the bivariate negative binomial. We apply these models to a portfolio of the Portuguese insurance company Tranquilidade and compare the results obtained.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545475</subfield>
      <subfield code="a">Tarifas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20160001679</subfield>
      <subfield code="a">Modelos lineales generalizados</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080598822</subfield>
      <subfield code="a">Riesgos dependientes</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20170012047</subfield>
      <subfield code="a">Centeno, M. de Lourdes</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="g">01/09/2017 Volumen 47 Número 3 - septiembre 2017 , p. 875-894</subfield>
    </datafield>
  </record>
</collection>