Pesquisa de referências

Insurance portfolio risk retention

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20180003950</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20180213170959.0</controlfield>
    <controlfield tag="008">180207e20171204esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20180001284</subfield>
      <subfield code="a">Frees, Edward</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Insurance portfolio risk retention</subfield>
      <subfield code="c">Edward Frees</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this article, I introduce a statistic for managing a portfolio of insurance risks. This tool is based on changes in the risk profile when changes in a risk parameter, such as a deductible, coinsurance, or upper policy limit, are made. I refer to the new statistic as a risk measure relative marginal change and denote it as RM2. By examining data from the Wisconsin Local Government Property Fund, I show how it can be used by an insurer to identify the best and worst risks in terms of opportunities for risk management. The RM2 changes reflect the underlying dependence structure of risks; I use an elliptical copula framework to demonstrate the sensitivity of risk mitigation strategy to the dependence structure.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080598778</subfield>
      <subfield code="a">Retención de riesgos</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">04/12/2017 Tomo 21 Número 4 - 2017 , p. 526-551</subfield>
    </datafield>
  </record>
</collection>