Evolutionary hierarchical credibility
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20180005756</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20180313090222.0</controlfield>
<controlfield tag="008">180226e20180101bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20080660253</subfield>
<subfield code="a">Taylor, Greg</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Evolutionary hierarchical credibility</subfield>
<subfield code="c">Greg Taylor</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The hierarchical credibility model was introduced, and extended, in the 70s and early 80s. It deals with the estimation of parameters that characterize the nodes of a tree structure. That model is limited, however, by the fact that its parameters are assumed fixed over time. This causes the model's parameter estimates to track the parameters poorly when the latter are subject to variation over time. This paper seeks to remove this limitation by assuming the parameters in question to follow a process akin to a random walk over time, producing an evolutionary hierarchical model. The specific form of the model is compatible with the use of theKalman filter for parameter estimation and forecasting. The application of theKalman filter is conceptually straightforward, but the tree structure of the model parameters can be extensive, and some effort is required to retain organization of the updating algorithm. This is achieved by suitable manipulation of the graph associated with the tree. The graph matrix then appears in the matrix calculations inherent in the Kalman filter. A numerical example is included to illustrate the application of the filter to the model.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080663520</subfield>
<subfield code="a">Credibilidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080597665</subfield>
<subfield code="a">Métodos estadísticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080618575</subfield>
<subfield code="a">Teoría de la credibilidad</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/01/2018 Volumen 48 Número 1 - enero 2018 , p. 339-374</subfield>
</datafield>
</record>
</collection>