Pesquisa de referências

A Hidden markov approach to disability insurance

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<nonSort xml:space="preserve">A  </nonSort>
<title>Hidden markov approach to disability insurance</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20150005106">
<namePart>Löfdahl, Björn</namePart>
<nameIdentifier>MAPA20150005106</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">2018</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Point and interval estimation of future disability inception and recovery rates is predominantly carried out by combining generalized linear models with time series forecasting techniques into a two-step method involving parameter estimation from historical data and subsequent calibration of a time series model. This approach may lead to both conceptual and numerical problems since any time trend components of the model are incoherently treated as both model parameters and realizations of a stochastic process. We suggest that this general two-step approach can be improved in the following way: First, we assume a stochastic process form for the time trend component. The corresponding transition densities are then incorporated into the likelihood, and the model parameters are estimated using the Expectation-Maximization algorithm. We illustrate the modeling procedure by fitting the model to Swedish disability claims data</abstract>
<note type="statement of responsibility">Boualem Djehiche, Björn Löfdahl</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080576783">
<topic>Modelo de Markov</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080562144">
<topic>Discapacidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080603793">
<topic>Seguro de incapacidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080603120">
<topic>Procesos estocásticos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080597733">
<topic>Modelos estadísticos</topic>
</subject>
<subject authority="lcshac" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080637811">
<geographic>Suecia</geographic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>05/03/2018 Tomo 22 Número 1 - 2018 , p. 119-136</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">180606</recordCreationDate>
<recordChangeDate encoding="iso8601">20180615131304.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20180017032</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>