Stochastic payments per claim incurred
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Stochastic payments per claim incurred</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2019</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We propose a Bayesian model to quantify the uncertainty associated with the payments per claim incurred (PPCI) algorithm. Based on the PPCI algorithm, two submodels are proposed for the number of reported claims run-off triangle and the PPCI run-off triangle, respectively. The model for the claims amount is then derived from the two submodels under the assumption of independence between the number of incurred claims and the PPCI. The joint likelihood of the number of reported claims and claims amount is derived. The posterior distribution of parameters is estimated via the Hamiltonian Monte Carlo (HMC) sampling approach. The Bayesian estimator, the process variance, the estimation variance, and the predictive distribution of unpaid claims are also studied. The proposed model and the HMC inference engine are applied to to an empirical claims dataset of the WorkSafe Victoria to estimate the unpaid claims of the doctor benefit. The Bayesian modeling procedure is further refined by including a preliminary generalized linear model analysis. The results are compared with those in a PwC report. An alternative model is compared with the proposed model based on various information criteria.</abstract>
<note type="statement of responsibility">Guangyuan Gao, Shengwang Meng, Yanlin Shi</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20100065242">
<topic>Teorema de Bayes</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080616106">
<topic>Cálculo de probabilidades</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080586447">
<topic>Modelo estocástico</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>North American actuarial journal</title>
</titleInfo>
<originInfo>
<publisher>Schaumburg : Society of Actuaries, 1997-</publisher>
</originInfo>
<identifier type="issn">1092-0277</identifier>
<identifier type="local">MAP20077000239</identifier>
<part>
<text>01/03/2019 Tomo 23 Número 1 - 2019 , p. 11-26</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">190521</recordCreationDate>
<recordChangeDate encoding="iso8601">20190524085613.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20190014489</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>