Pesquisa de referências

Moral hazard, risk sharing, and the optimal pool size

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20190019613</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20190625125338.0</controlfield>
    <controlfield tag="008">190624e20190603usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">7</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Moral hazard, risk sharing, and the optimal pool size</subfield>
      <subfield code="c">Frauke von Bieberstein... [et al.]</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">27 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We examine the optimal size of risk pools with moral hazard. In risk pools, the effective share of the own loss borne is the sum of the direct share (the retention rate) and the indirect share borne as residual claimant. In a model with identical individuals with mixed risk-averse utility functions, we show that the effective share required to implement a specific effort increases in the pool size. This is a downside of larger pools as it, ceteris paribus, reduces risk sharing. However, we find that the benefit from diversifying the risk in larger pools always outweighs the downside of a higher effective share. We conclude that, absent transaction costs, the optimal pool size converges to infinity. In our basic model, we restrict attention to binary effort levels, but we show that our results extend to a model with continuous effort choice.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080591182</subfield>
      <subfield code="a">Gerencia de riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080625542</subfield>
      <subfield code="a">Diversificación de los riesgos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20100005699</subfield>
      <subfield code="a">Pools</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564049</subfield>
      <subfield code="a">Riesgo moral</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579647</subfield>
      <subfield code="a">Compartimentación</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20190008495</subfield>
      <subfield code="a">Bieberstein, Frauke von</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000727</subfield>
      <subfield code="t">The Journal of risk and insurance</subfield>
      <subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
      <subfield code="x">0022-4367</subfield>
      <subfield code="g">03/06/2019 Volumen 86 Número 2 - junio 2019 , p. 297-313</subfield>
    </datafield>
  </record>
</collection>