Accelerating automotive's AI transformation : how driving AI enterprise-wide can turbo-charge organizational value
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cam a22000004b 4500</leader>
<controlfield tag="001">MAP20200027126</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911190641.0</controlfield>
<controlfield tag="008">200416s2020 fra|||| ||| ||eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">921.8</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Accelerating automotive's AI transformation</subfield>
<subfield code="b">: how driving AI enterprise-wide can turbo-charge organizational value</subfield>
<subfield code="c">Markus Winkler...[Et al.]</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">Paris [etc.]</subfield>
<subfield code="b">Capgemini Research Institute</subfield>
<subfield code="c">2019</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">36 p.</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Artificial intelligence (AI) holds the key to a new future of value for the automotive industry. While popular attention is focused on the use of AI in autonomous cars, the industry is also working on AI applications that extend far beyond engineering, production, supply chain, customer experience, and mobility services among others. Our research finds that the industry has made modest progress in AI-driven transformation since 2017. Many organizations have yet to scale their AI applications beyond pilots and proofs-of-concept. Yet, there is a group of companies that are making significant progress in driving use cases at scale. </subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080617219</subfield>
<subfield code="a">Industria automovilística</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080610845</subfield>
<subfield code="a">Fábricas de automóviles</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080605674</subfield>
<subfield code="a">Desarrollo tecnológico</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586546</subfield>
<subfield code="a">Nuevas tecnologías</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611200</subfield>
<subfield code="a">Inteligencia artificial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080626822</subfield>
<subfield code="a">Creación de valor en la empresa</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20200018100</subfield>
<subfield code="a">Winkler, Markus </subfield>
</datafield>
<datafield tag="710" ind1="2" ind2=" ">
<subfield code="0">MAPA20200008163</subfield>
<subfield code="a">Capgemini Research Institute</subfield>
</datafield>
</record>
</collection>