Generalizing the log-moyal distribution and regression models for heavy-tailed loss data
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Generalizing the log-moyal distribution and regression models for heavy-tailed loss data</title>
</titleInfo>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20110007928">
<namePart>Beirlant, Jan</namePart>
<nameIdentifier>MAPA20110007928</nameIdentifier>
</name>
<name type="personal" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20180003103">
<namePart>Meng, Shengwang</namePart>
<nameIdentifier>MAPA20180003103</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">Catastrophic loss data are known to be heavy-tailed. Practitioners then need models that are able to capture both tail and modal parts of claim data. To this purpose, a new parametric family of loss distributions is proposed as a gamma mixture of the generalized log Moyal distribution from Bhati and Ravi (2018), termed the generalized log-Moyal gamma (GLMGA) distribution. While the GLMGA distribution is a special case of the GB2 distribution, we show that this simpler model is effective in regression modeling of large and modal loss data. Regression modeling and applications to risk measurement are illustrated using a detailed analysis of a Chinese earthquake loss data set, comparing with the results of competing models from the literature. To this end, we discuss the, probabilistic characteristics of the GLMGA and statistical estimation of the parameters through maximum likelihood. Further illustrations of the applicability of the new class of distributions are provided with the fire claim data set reported in Cummins et al. (1990) and a Norwegian fire losses data set discussed recently in Bhati and Ravi (2018).</abstract>
<note type="statement of responsibility">Zhengxiao Li , Jan Beirlant, Shengwang Meng</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080592011">
<topic>Modelos actuariales</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080607630">
<topic>Pérdidas por incendios</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080600204">
<topic>Catástrofes naturales</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080567118">
<topic>Reclamaciones</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080556792">
<topic>Terremotos</topic>
</subject>
<classification authority="">6</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>01/01/2021 Volumen 51 Número 1 - enero 2021 , p. 57-99</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">210218</recordCreationDate>
<recordChangeDate encoding="iso8601">20210223091413.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210005466</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>