Pesquisa de referências

Keyboard worriers

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20210006654</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220911211039.0</controlfield>
    <controlfield tag="008">210225e20210201gbr|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">219</subfield>
    </datafield>
    <datafield tag="100" ind1=" " ind2=" ">
      <subfield code="0">MAPA20210003936</subfield>
      <subfield code="a">Ng, John </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Keyboard worriers</subfield>
      <subfield code="c">John Ng, Melanie Zhang</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Twitter offers the public the opportunity to give their real-time thoughts on world events by posting short texts known as tweets'. The COVID-19 pandemic was the defining event of 2020, which makes it a great subject for sentiment analysis  the use of natural language processing to automatically determine the emotion a writer is expressing in a piece of text  or tweets. We wanted to see if we could use Twitter data relating to COVID-19 in the UK to uncover insights pertinent to public interest and the insurance industry. </subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578848</subfield>
      <subfield code="a">Análisis de datos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080624019</subfield>
      <subfield code="a">Comportamiento del consumidor</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20200005599</subfield>
      <subfield code="a">COVID-19</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080552022</subfield>
      <subfield code="a">Pandemias</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586294</subfield>
      <subfield code="a">Mercado de seguros</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20210003943</subfield>
      <subfield code="a">Zhang, Melanie</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200013259</subfield>
      <subfield code="t">The Actuary : the magazine of the Institute & Faculty of Actuaries</subfield>
      <subfield code="d">London :  Redactive Publishing, 2019-</subfield>
      <subfield code="g">01/02/2021 Número 1 - febrero 2021 , p. 27-29</subfield>
    </datafield>
  </record>
</collection>