A Hybrid bees algorithm with grasshopper optimization algorithm for optimal deployment of wireless sensor networks
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20210011726</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220911190025.0</controlfield>
<controlfield tag="008">210413e20210215esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">922.134</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20210005596</subfield>
<subfield code="a">Deghbouch, Hicham</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="2">
<subfield code="a">A Hybrid bees algorithm with grasshopper optimization algorithm for optimal deployment of wireless sensor networks</subfield>
<subfield code="c">Hicham Deghbouch, Fatima Debbat</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This work addresses the deployment problem in Wireless Sensor Networks (WSNs) by hybridizing two metaheuristics, namely the Bees Algorithm (BA) and the Grasshopper Optimization Algorithm (GOA). The BA is an optimization algorithm that demonstrated promising results in solving many engineering problems. However, the local search process of BA lacks ecient exploitation due to the random assignment of search agents inside the neighborhoods, which weakens the algorithm's accuracy and results in slow convergence especially when solving higher dimension problems. To alleviate this shortcoming, this paper proposes a hybrid algorithm that utilizes the strength of the GOA to enhance the exploitation phase of the BA. To prove the eectiveness of the proposed algorithm, it is applied for WSNs deployment optimization with various deployment settings. Results demonstrate that the proposed hybrid algorithm can optimize the deployment of WSN and outperforms the state-of-the-art algorithms in terms of coverage, overlapping area, average moving distance, and energy consumption. </subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080553128</subfield>
<subfield code="a">Algoritmos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611200</subfield>
<subfield code="a">Inteligencia artificial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20170006497</subfield>
<subfield code="a">Computación cognitiva</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20210005602</subfield>
<subfield code="a">Debbat, Fatima</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20200034445</subfield>
<subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
<subfield code="d">IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
<subfield code="x">1988-3064</subfield>
<subfield code="g">15/02/2021 Volumen 24 Número 67 - febrero 2021 , p. 18-35</subfield>
</datafield>
<datafield tag="856" ind1=" " ind2=" ">
<subfield code="q">application/pdf</subfield>
<subfield code="w">1110629</subfield>
<subfield code="y">Recurso electrónico / Electronic resource</subfield>
</datafield>
</record>
</collection>