Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Seção: ArtigosTítulo: Robust estimates of insurance misrepresentation through kernel quantile regression mixtures / Hong Li, Qifan Song, Jianxi SuAutor: Li, HongNotas: Sumario: This paper pertains to a class of nonparametric methods for studying the misrepresentation issue in insurance applications. For this purpose, mixture models based on quantile regression in reproducing kernel Hilbert spaces are employed. Compared with the existing parametric approaches, the proposed framework features a more flexible statistics structure which could alleviate the risk of model misspecification, and is in the meantime more robust to outliers in the data. The proposed framework can not only estimate the prevalence of misrepresentation in the data, but also help identify the most suspicious individuals for the validation purpose. Through embedding state-of-the-art machine learning techniques, we present a novel statistics procedure to efficiently estimate the proposed misrepresentation model in the presence of massive data. The proposed methodology is applied to study the Medical Expenditure Panel Survey data, and a significant degree of misrepresentation activity is found on the self-reported insurance status.Registros relacionados: En: The Journal of risk and insurance. - Nueva York : The American Risk and Insurance Association, 1964- = ISSN 0022-4367. - 01/09/2021 Volumen 88 Número 3 - septiembre 2021 , p. 625-663Materia / lugar / evento: Empresas de segurosMercado de segurosNuevas tecnologíasBig dataOtros autores: Song, Qifan Su, Jianxi Outras classificações: 21Direitos: In Copyright (InC)Referencias externas: