Pesquisa de referências

Neighbouring prediction for mortality

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Neighbouring prediction for mortality</title>
</titleInfo>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2021</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We propose a new neighbouring prediction model for mortality forecasting. For each mortality rate at age x in year t, mx,t, we construct an image of neighbourhood mortality data around mx,t, that is, ?mx,t (x1, x2, s), which includes mortality information for ages in [x-x1, x+x2], lagging k years (1 = k = s). Combined with the deep learning model  convolutional neural network, this framework is able to capture the intricate nonlinear structure in the mortality data: the neighbourhood effect, which can go beyond the directions of period, age, and cohort as in classic mortality models. By performing an extensive empirical analysis on all the 41 countries and regions in the Human Mortality Database, we find that the proposed models achieve superior forecasting performance. This framework can be further enhanced to capture the patterns and interactions between multiple populations.</abstract>
<note type="statement of responsibility">Chou-Wen Wang, Jinggong Zhang, Wenjun Zhu</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555016">
<topic>Longevidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080555306">
<topic>Mortalidad</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20120011137">
<topic>Predicciones estadísticas</topic>
</subject>
<classification authority="">7</classification>
<relatedItem type="host">
<titleInfo>
<title>Astin bulletin</title>
</titleInfo>
<originInfo>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
</originInfo>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<part>
<text>13/09/2021 Volumen 51 Número 3 - septiembre 2021 , p. 689-718</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">211019</recordCreationDate>
<recordChangeDate encoding="iso8601">20211019090158.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20210029981</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>