Pesquisa de referências

Estudio de la longevidad aplicando redes neuronales artificiales

Estudio de la longevidad aplicando redes neuronales artificiales
Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cam a22000004b 4500
001  MAP20210035807
003  MAP
005  20220911185739.0
008  211217s2021 esp|||| ||| ||spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
1001 ‎$0‎MAPA20210037115‎$a‎Bautista Ramos, Susana
24510‎$a‎Estudio de la longevidad aplicando redes neuronales artificiales‎$c‎Susana Bautista Ramos
260  ‎$a‎Madrid‎$b‎Universidad Carlos III de Madrid‎$c‎2021
300  ‎$a‎79 p.
500  ‎$a‎Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutores: José Miguel Rodríguez Pardo del Castillo, Jesús Ramón Simón del Potro Curso 2020-2021
520  ‎$a‎Uno de los riesgos asociados a la vida humana que más interés despierta en el campo actuarial es el estudio del riesgo de longevidad. Este riesgo se define como la probabilidad de que las personas puedan sobrevivir más allá de lo esperado, generando una creciente preocupación en el mercado asegurador del negocio de seguros de vida debido a la posibilidad de la subestimación de las reservas, lo cual implica un riesgo de déficit de recursos financieros para cumplir las obligaciones de pago futuras. Una forma de mitigación de este tipo de riesgos es la proyección de la mortalidad de la población a nivel país, permitiendo al país o población asegurada estructurar sus planes de pensiones, o sirviendo de asistencia a las entidades aseguradoras en procesos de pricing o reserving. A lo largo del tiempo se han desarrollado diferentes técnicas y modelos orientados a la predicción de la mortalidad. Entre ellos se encuentran modelos paramétricos, como los conocidos modelos clásicos o modelos no paramétricos como el modelo de P-splines. El desarrollo de técnicas más avanzadas, como las basadas en la Inteligencia Artificial, han permitido un estudio de la longevidad desde un nuevo paradigma, el cual podría dar lugar al nacimiento de modelos que arrojen una predicción más precisa que la aportada por los métodos hasta ahora utilizados. Una de estas técnicas es la desarrollada en el presente trabajo, basada en el estudio de la longevidad utilizando Redes Neuronales Artificiales (RNA). Las RNA cuentan con una base matemática compleja, así como un conjunto de parametrizaciones como el número de neuronas en cada capa, tipo de aprendizaje, funciones de activación etc, que hacen que la estimación de dichos paramétros se basen en procesos de prueba y error
650 4‎$0‎MAPA20080555016‎$a‎Longevidad
650 4‎$0‎MAPA20090041776‎$a‎Análisis actuarial
650 4‎$0‎MAPA20080624842‎$a‎Redes neuronales artificiales
650 4‎$0‎MAPA20210037153‎$a‎Modelos paramétricos
650 4‎$0‎MAPA20080611200‎$a‎Inteligencia artificial
650 4‎$0‎MAPA20130017037‎$a‎Análisis predictivos
650 4‎$0‎MAPA20080664510‎$a‎Trabajos de investigación
7102 ‎$0‎MAPA20080455026‎$a‎Universidad Carlos III de Madrid
830 0‎$0‎MAPA20160014013‎$a‎Trabajos Fin de Master
856  ‎$q‎application/pdf‎$w‎1113086‎$y‎Recurso electrónico / Electronic resource