On Fitting Dependent Nonhomogeneous Loss Models to Unearned Premium Risk
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220000888</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220117142026.0</controlfield>
<controlfield tag="008">220117e20211206esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20220000277</subfield>
<subfield code="a">Jessup, Sébastien</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">On Fitting Dependent Nonhomogeneous Loss Models to Unearned Premium Risk</subfield>
<subfield code="c">Sébastien Jessup, Jean-Philippe Boucher, Mathieu Pigeon</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Unearned premium or, more particularly, the risk associated to it, has only recently received regulatory attention. Losses linked to unearned premium, or unearned losses, occur after the evaluation date for policies written before the evaluation date. Given that an inadequate acquisition pattern of premium and approximate modeling of premium liability can lead to an inaccurate reserve around unearned premium risk, an individual nonhomogeneous loss model including cross-coverage dependence is proposed to provide an alternative method of evaluating this risk. Claim occurrence is analyzed in terms of both claim seasonality and multiple coverage frequency. Homogeneous and heterogeneous distributions are fitted to marginals. Copulas are fitted to pairs of coverages using rank-based methods and a tail function. This approach is used on a recent Ontario auto database.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586454</subfield>
<subfield code="a">Modelos analíticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080545260</subfield>
<subfield code="a">Riesgos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20080297572</subfield>
<subfield code="a">Boucher, Jean-Philippe</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20130016573</subfield>
<subfield code="a">Pigeon, Mathieu</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">06/12/2021 Tomo 25 Número 4 - 2021 , p. 524-542</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
</record>
</collection>