Pesquisa de referências

Multivariate composite copulas

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220003056</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220131172603.0</controlfield>
    <controlfield tag="008">220131e20220103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="245" ind1="0" ind2="0">
      <subfield code="a">Multivariate composite copulas</subfield>
      <subfield code="c">Jiehua Xie...[et.al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, we present a method for generating a copula by composing two arbitrary n-dimensional copulas via a vector of bivariate functions, where the resulting copula is named as the multivariate composite copula. A necessary and sufficient condition on the vector guaranteeing the composite function to be a copula is given, and a general approach to construct the vector satisfying this necessary and sufficient condition via bivariate copulas is provided. The multivariate composite copula proposes a new framework for the construction of flexible multivariate copula from existing ones, and it also includes some known classes of copulas. It is shown that the multivariate composite copula has a clear probability structure, and it satisfies the characteristic of uniform convergence as well as the reproduction property for its component copulas. Some properties of multivariate composite copulas are discussed. Finally, numerical illustrations and an empirical example on financial data are provided to show the advantages of the multivariate composite copula, especially in capturing the tail dependence.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20090035034</subfield>
      <subfield code="a">Modelización mediante cópulas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080604721</subfield>
      <subfield code="a">Análisis multivariante</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220001052</subfield>
      <subfield code="a">Xie, Jiehua</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">03/01/2022 Volumen 52 Número 1 - enero 2022 , p. 145-184</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
  </record>
</collection>