Pesquisa de referências

On the rBell family of distributions with actuarial applications

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220003070</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220131172026.0</controlfield>
    <controlfield tag="008">220131e20220103esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220000970</subfield>
      <subfield code="a">Bhati, Deepesh</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">On the rBell family of distributions with actuarial applications</subfield>
      <subfield code="c">Deepesh Bhati, Enrique Calderín-Ojeda</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this paper, a new three-parameter discrete family of distributions, the  family, is introduced. The family is based on series expansion of the r-Bell polynomials. The proposed model generalises the classical Poisson and the recently proposed Bell and BellTouchard distributions. It exhibits interesting stochastic properties. Its probabilities can be computed by a recursive formula that allows us to calculate the probability function of the amount of aggregate claims in the collective risk model in terms of an integral equation. Univariate and bivariate regression models are presented. The former regression model is used to explain the number of out-of-use claims in an automobile insurance portfolio, by showing a good out-of-sample performance. The latter is used to describe the number of out-of-use and parking claims jointly. This family provides an alternative to other traditionally used distributions to describe count data such as the negative binomial and Poisson-inverse Gaussian models.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080586447</subfield>
      <subfield code="a">Modelo estocástico</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080603779</subfield>
      <subfield code="a">Seguro de automóviles</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20110012229</subfield>
      <subfield code="a">Calderín-Ojeda, Enrique</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000420</subfield>
      <subfield code="g">03/01/2022 Volumen 52 Número 1 - enero 2022 , p. 185-210</subfield>
      <subfield code="x">0515-0361</subfield>
      <subfield code="t">Astin bulletin</subfield>
      <subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
    </datafield>
  </record>
</collection>