On a Family of Log-Gamma-Generated Archimedean Copulas
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20220008570</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20220315132225.0</controlfield>
<controlfield tag="008">220315e20220307esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20220002752</subfield>
<subfield code="a">Yang, Yaming</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">On a Family of Log-Gamma-Generated Archimedean Copulas</subfield>
<subfield code="c">Yaming Yang, Shuanming Li</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Modeling dependence structure among various risks, especially the measure of tail dependence and the aggregation of risks, is crucial for risk management. In this article, we present an extension to the traditional one-parameter Archimedean copulas by integrating the log-gamma-generated (LGG) margins. This class of novel multivariate distribution can better capture the tail dependence. The distortion effect on the classic one-parameter Archimedean copulas is well exhibited and the analytical expression of the sum of bivariate margins is proposed. The model provides a flexible way to capture tail risks and aggregate portfolio losses. Sufficient conditions for constructing a legitimate d-dimensional LGG Archimedean copula as well as the simulation framework are also proposed. Furthermore, two applications of this model are presented using concrete insurance datasets.
</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080591182</subfield>
<subfield code="a">Gerencia de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20090035034</subfield>
<subfield code="a">Modelización mediante cópulas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080588953</subfield>
<subfield code="a">Análisis de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20090000544</subfield>
<subfield code="a">Li, Shuanming</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="g">07/03/2022 Tomo 26 Número 1 - 2022 , p. 123-142</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
</datafield>
</record>
</collection>