Pesquisa de referências

Bounds on Spearman's rho when at least one random variable is discrete

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220019897</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220701145126.0</controlfield>
    <controlfield tag="008">220701e20220606che|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220006712</subfield>
      <subfield code="a">Mesfioui, Mhamed</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Bounds on Spearman's rho when at least one random variable is discrete</subfield>
      <subfield code="c">Mhamed Mesfioui, Pierre Zuyderhoff </subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Spearman's rho is one of the most popular dependence measures used in practice to describe the association between two random variables. However, in case of at least one random variable being discrete, Spearman's correlations are often bounded and restricted to a sub-interval of [-1,1]. Hence, small positive values of Spearman's rho may actually support a strong positive dependence when getting close to its highest attainable value. Similarly, slight negative values of Spearman's rho can actually mean a strong negative dependence. In this paper, we derive the best-possible upper and lower bounds for Spearman's rho when at least one random variable is discrete. We illustrate the obtained lower and upper bounds in some situations of practical relevance.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20220007085</subfield>
      <subfield code="g">06/06/2022 Volúmen 12 - Número 1 - junio 2022 , p. 321-348</subfield>
      <subfield code="t">European Actuarial Journal</subfield>
      <subfield code="d">Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</subfield>
    </datafield>
  </record>
</collection>