Pesquisa de referências

Best upper and lower bounds on Spearman's rho for zero-inflated continuous variables and their application to insurance

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20220019934</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20220704124551.0</controlfield>
    <controlfield tag="008">220704e20220606che|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20220006712</subfield>
      <subfield code="a">Mesfioui, Mhamed</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Best upper and lower bounds on Spearman's rho for zero-inflated continuous variables and their application to insurance</subfield>
      <subfield code="c">Mhamed Mesfioui, Julien Trufin</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">In this note, we establish the best lower and upper bounds on Spearman's rho for zero-inflated continuous random variables studied by Pimentel (Kendall's Tau and Spearman's Rho for Zero Inflated Data (Ph.D. dissertation). Western Michigan University, Kalamazoo, 2009). The proposed bounds are explicitly expressed in terms of the respective probability masses at the origin. As illustrated in an example based on insurance data, these bounds are useful in practice when interpreting the values of Spearman's rho.

</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080557799</subfield>
      <subfield code="a">Dependencia</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20090039032</subfield>
      <subfield code="a">Trufin, Julien</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20220007085</subfield>
      <subfield code="g">06/06/2022 Volúmen 12 - Número 1 - junio 2022 , p. 417-423</subfield>
      <subfield code="t">European Actuarial Journal</subfield>
      <subfield code="d">Cham, Switzerland  : Springer Nature Switzerland AG,  2021-2022</subfield>
    </datafield>
  </record>
</collection>