Pesquisa de referências

Next generation models for portfolio risk management : An approach using financial big data

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Next generation models for portfolio risk management</title>
<subTitle>: An approach using financial big data</subTitle>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20220000314">
<namePart>Jung, Kwangmin</namePart>
<nameIdentifier>MAPA20220000314</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">usa</placeTerm>
</place>
<dateIssued encoding="marc">2022</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">This paper proposes a dynamic process of portfolio risk measurement to address potential information loss. The proposed model takes advantage of financial big data to incorporate out-of-target-portfolio information that may be missed when one considers the value at risk (VaR) measures only from certain assets of the portfolio. We investigate how the curse of dimensionality can be overcome in the use of financial big data and discuss where and when benefits occur from a large number of assets. In this regard, the proposed approach is the first to suggest the use of financial big data to improve the accuracy of risk analysis. We compare the proposed model with benchmark approaches and empirically show that the use of financial big data improves small portfolio risk analysis. Our findings are useful for portfolio managers and financial regulators, who may seek for an innovation to improve the accuracy of portfolio risk estimation.

</abstract>
<note type="statement of responsibility">Kwangmin Jung,Donggyu Kim,Seunghyeon Yu</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080591182">
<topic>Gerencia de riesgos</topic>
</subject>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20080585518">
<topic>Gestión de activos</topic>
</subject>
<classification authority="">7</classification>
<relatedItem type="host">
<titleInfo>
<title>The Journal of risk and insurance</title>
</titleInfo>
<originInfo>
<publisher>Nueva York : The American Risk and Insurance Association, 1964-</publisher>
</originInfo>
<identifier type="issn">0022-4367</identifier>
<identifier type="local">MAP20077000727</identifier>
<part>
<text>05/09/2022 Volumen 89 Número 3 - septiembre 2022 , p. 765-787</text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">220914</recordCreationDate>
<recordChangeDate encoding="iso8601">20220914103203.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20220023504</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>